UNIVERSITY OF TECHNOLOGY, SYDNEY
 School of Mathematical Sciences

 37457 Advanced Bayesian Methods

 37457 Advanced Bayesian Methods}

AsSignment 1 with Streamlined Notation

Due time and date: No, you don't have to hand this one in.

1. Let x be a discrete random variable taking values 0 and 1 with equal probability and y be another random variable such that

$$
\begin{aligned}
& p(y \mid x=0)=\frac{y}{3}, \quad y=1,2 \\
& p(y \mid x=1)=\frac{5-y}{10}, \quad y=1,2,3,4
\end{aligned}
$$

(a) Construct a table for the joint probability function $p(x, y)$.
(b) Find $P(x+y \leq 2)$.
(c) Find $p(y)$, the marginal probability mass function of y.
2. Let discrete random variables x and y have joint probability mass function

$$
p(x, y)= \begin{cases}\frac{221(3 y+2)}{603\left(9 x^{2}+4\right)}, & x=1,2,3, \quad y=1,2,3 \\ 0, & \text { otherwise }\end{cases}
$$

Determine the marginal probability mass functions $p(x)$ and $p(y)$.
3. Let continuous random variables x and y have joint density function

$$
p(x, y)= \begin{cases}\frac{y-x}{105}, & 2<x<5, \quad 5<y<12 \\ 0, & \text { otherwise }\end{cases}
$$

Determine the marginal density functions $p(x)$ and $p(y)$.

Please turn over...
4. Let continuous random variables x and y have joint density function

$$
p(x, y)=\left\{\begin{array}{lc}
\frac{e^{-y\left(x^{2}+1\right)}}{\pi}, & y>0 \\
0, & \text { otherwise }
\end{array}\right.
$$

Determine the marginal density functions $p(x)$ and $p(y)$.
5. Suppose that continuous random variables x and y have joint density function satisfying

$$
p(x, y) \propto \exp \left(13 x y-94 x^{2}-\frac{1}{2} y^{2}\right), \quad-\infty<x<\infty,-\infty<y<\infty
$$

(The \propto notation is relatively standard throughout the mathematical sciences and means that the left-hand side equals the right-hand side except for multiplicative factors that do not depend on the function arguments. For example, if $g(x, y)=171 \cos (x+12 y)$ then we may write $g(x, y) \propto \cos (x+12 y)$.)

Determine $p(y \mid x=\stackrel{\circ}{x})$, the conditional density function of y given $x=\stackrel{\circ}{x}$.

