37458

Advanced Bayesian Methods

Bayesian Models for Grouped Data: Additional Aspects

The previous slide fit the Bayesian random intercepts model

$$egin{aligned} y_{ij}|eta_0,eta_1,eta_2,u_i,\sigma_{arepsilon}^2 \stackrel{\mbox{\tiny ind.}}{\sim} N\Big((eta_0+u_i)+eta_1\,x_{ij},\sigma_{arepsilon}^2\Big) \ u_i\Big|\sigma_u^2 \stackrel{\mbox{\tiny ind.}}{\sim} Nig(0,\sigma_u^2\Big) \end{aligned}$$

LIMITATION: The lines for each school are parallel (i.e. same slope).

Random Intercepts and Slopes Models

$$\begin{split} y_{ij} | \beta_0, \beta_1, \beta_2, u_{0i}, u_{1i}, \sigma_{\varepsilon}^2 \overset{\text{ind.}}{\sim} N \Big((\beta_0 + u_{0i}) + (\beta_1 + u_{1i}) \, x_{ij}, \sigma_{\varepsilon}^2 \Big), \\ \left[\begin{array}{c} u_{0i} \\ u_{1i} \end{array} \right] \Bigg| \sigma_{u0}^2, \sigma_{u1}^2, \rho_u \overset{\text{ind.}}{\sim} N \left(\left[\begin{array}{c} 0 \\ 0 \end{array} \right], \left[\begin{array}{c} \sigma_{u0}^2 & \rho_u \sigma_{u0} \sigma_{u1} \\ \rho_u \sigma_{u0} \sigma_{u1} & \sigma_{u1}^2 \end{array} \right] \right). \end{split}$$

Note that

$$\begin{bmatrix} \sigma_{u0}^2 & \rho_u \sigma_{u0} \sigma_{u1} \\ \rho_u \sigma_{u0} \sigma_{u1} & \sigma_{u1}^2 \end{bmatrix}$$

is a general 2×2 covariance matrix where

 $-1 < \rho_u < 1$ is the correlation between the u_{0i} and u_{1i} .

Variance Component Prior Debate (early 2000s)

Look at Stan code

Until about 2000 most Bayesian analysts used

 $p(\sigma^2) \sim \text{Inverse-Gamma}(\varepsilon, \varepsilon) \quad (\varepsilon \text{ 'small'})$

as a 'vague' prior for variance components - because of its conjugate status.

Recent literature (e.g. Gelman, 2006, *Bayesian Analysis*) has criticised this choice since the Inverse-Gamma(ε, ε) distribution is not very vague.

Gelman's default recommendation is half-Cauchy with high scale parameter.

$$p(\sigma) = \frac{2A}{\pi(\sigma^2 + A^2)}, \quad \sigma^2 > 0, \quad A \text{ `big'}$$

HALF-CAUCHY PRIORS

FOR STANDARD DEVIATION

PARAMETERS

Look at Stan code

Covariance Matrix Priors

In 2012 (here in Ultimo, N.S.W.) Alan Huang and Matt Wand extended the Gelman Half-Cauchy prior idea to covariance matrix priors and published:

Huang, A. and Wand, M.P. (2013). Simple marginally noninformative prior distributions for covariance matrices. *Bayesian Analysis*, **8**, 439–452.

(Naturally) the class's Stan scripts use this prior – but technical details left aside (but Huang & Wand paper on lecturer's webpages).

SCALING IN

BAYESIAN ANALYSIS

A New Species of Snake!

A zoologist discovers a new species of snake in a remote part of the Amazon. The snakes are very long and the zoologist measures 100 of them.

The data are sent back to her lab and a statistician fits the following Bayesian model in Stan:

$x_i | \mu, \sigma^2 \stackrel{\text{ind.}}{\sim} N(\mu, \sigma^2)$

 $\mu \sim N(0, 100^2), \quad \sigma \sim \mathsf{Half-Cauchy}(0, 100^2)$

where x_1, \ldots, x_{100} are the snake lengths in metres. The statistician wants to make Bayesian inference about:

 $\mu =$ mean length of snake species.

IN DECIMETRES

INSTEAD, MEASURE LENGTH

IN CENTIMETRES

INSTEAD, MEASURE LENGTH

IN MILLIMETRES

Summary of Bayesian Analyses With Different Length Units

length units	classical sample mean	Bayes estimate of μ
metres	20.11	20.11
decimetres	201.1	201.1
centimetres	s 2011	1993
millimetres	20110	44.7

Remedy

are the original snake length data then first standardise to

 $x_i \equiv \frac{x_i^{\text{orig}} - \text{sample mean}}{\text{sample standard deviation}}$

 $x_1^{\text{orig}}, \ldots, x_{100}^{\text{orig}}$

Then alright to use:

lf

 $x_i | \mu \overset{\mathrm{ind.}}{\sim} N(\mu, \sigma^2)$

 $\mu \sim N(0, 100), \quad \sigma \sim \mathsf{Half-Cauchy}(0, 100)$

Conversion Back to Original Units

If we use a Bayesian inference engine to do regression analysis for a model such as:

$$\mathsf{price}_i | eta_0, eta_1, \sigma^2 \stackrel{\scriptscriptstyle \mathsf{ind.}}{\sim} N\Big(eta_0 + eta_1 \, \mathsf{age}_i, \sigma^2\Big)$$

for data on used cars then

 $\beta_1 =$ depreciation rate.

If standardised data used then best to transform β_1 to meaningful units (e.g. dollars per year).

See Exercise 1 of Assignment 6.

CONCLUSION:

Bayesian inference with a fixed prior specification (such as $\mu \sim N(0, 100^2)$) depends on the units of measurement – sometimes crucially.

For big spreadsheets of data with dozens of columns this is a concern, since there can be data of many variable types on different scales and with different units.

BINARY RESPONSE

GROUPED DATA

Logistic Mixed Models

An example is:

$$\begin{split} y_{ij} | \beta_0, \beta_1, \beta_2, \beta_3 &\stackrel{\text{ind.}}{\sim} \text{Bernoulli} \left(\frac{1}{1 + \exp[-\{\beta_0 + u_{i0} + (\beta_1 + u_{i1})x_{1ij} + \beta_2 x_{2i}\}]} \right) \\ \begin{bmatrix} u_{0i} \\ u_{1i} \end{bmatrix} \left| \sigma_{u0}^2, \sigma_{u1}^2, \rho_u \stackrel{\text{ind.}}{\sim} N\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_{u0}^2 & \rho_u \sigma_{u0} \sigma_{u1} \\ \rho_u \sigma_{u0} \sigma_{u1} & \sigma_{u1}^2 \end{bmatrix} \right) \end{split}$$

Assignment 6, Question 4 has an example of this type.

Let's look at coding in Stan...

Markov Chain Monte Carlo Making a Difference

Without Markov chain Monte Carlo, fitting logistic mixed models with accurate inference is VERY HARD due to intractable integrals (even in the non-Bayesian case).

The availability of Bayesian inference engines makes such analyses routine – but this is quite a recent development for such an important model.

• • •