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Advanced Bayesian Methods

Bayesian Models for Grouped
Data: Additional Aspects
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Random Intercepts Model Recap

The previous slide fit the Bayesian random intercepts
model
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LIMITATION: The lines for each school are parallel
(i.e. same slope).
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Random Intercepts and Slopes Models

yij|�0,�1,�2, u0i, u1i,�
2
"

ind.⇠ N

⇣
(�0 + u0i) + (�1 + u1i) xij,�

2
"

⌘
,


u0i

u1i

� ������
2
u0,�

2
u1, ⇢u

ind.⇠ N

✓
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0

�
,


�

2
u0 ⇢u�u0�u1

⇢u�u0�u1 �

2
u1

�◆
.

Note that


�

2
u0 ⇢u�u0�u1

⇢u�u0�u1 �

2
u1

�

is a general 2⇥ 2 covariance matrix where

�1 < ⇢u < 1 is the correlation between the u0i and u1i.



Look at Stan code

HALF-CAUCHY PRIORS

FOR STANDARD DEVIATION

PARAMETERS

Variance Component Prior Debate (early 2000s)

Until about 2000 most Bayesian analysts used

p(�

2
) ⇠ Inverse-Gamma(", ") (" ‘small’)

as a ‘vague’ prior for variance components – because of its conjugate status.

Recent literature (e.g. Gelman, 2006, Bayesian Analysis) has criticised this choice
since the Inverse-Gamma(", ") distribution is not very vague.

Gelman’s default recommendation is half-Cauchy with high scale parameter.

p(�) =

2A

⇡(�

2
+ A

2
)

, �

2
> 0, A ‘big’
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Covariance Matrix Priors

In 2012 (here in Ultimo, N.S.W.) Alan Huang and Matt Wand
extended the Gelman Half-Cauchy prior idea to covariance matrix
priors and published:

Huang, A. and Wand, M.P. (2013). Simple marginally noninformative
prior distributions for covariance matrices. Bayesian Analysis, 8,
439–452.

(Naturally) the class’s Stan scripts use this prior – but technical
details left aside (but Huang & Wand paper on lecturer’s web-
pages).

Look at Stan code

SCALING IN

BAYESIAN ANALYSIS



A New Species of Snake!

A zoologist discovers a new species of snake in a remote part of the Amazon.
The snakes are very long and the zoologist measures 100 of them.

The data are sent back to her lab and a statistician fits the following Bayesian
model in Stan:

xi|µ,�

2 ind.⇠ N(µ,�

2
)

µ ⇠ N(0, 100

2
), � ⇠ Half-Cauchy(0, 100

2
)

where x1, . . . , x100 are the snake lengths in metres. The statistician wants to make
Bayesian inference about:

µ = mean length of snake species.
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INSTEAD, MEASURE LENGTH

IN CENTIMETRES
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Summary of Bayesian Analyses
With Different Length Units

length classical Bayes estimate
units sample mean of µ

metres 20.11 20.11

decimetres 201.1 201.1

centimetres 2011 1993

millimetres 20110 44.7

CONCLUSION:

Bayesian inference with a fixed prior specification
(such as µ ⇠ N(0, 100

2

)) depends on the units
of measurement – sometimes crucially.

For big spreadsheets of data with dozens of
columns this is a concern, since there can be
data of many variable types on different scales
and with different units.

Remedy

If

x

orig
1 , . . . , x

orig
100

are the original snake length data then first standardise to

xi ⌘
x

orig
i � sample mean

sample standard deviation
.

Then alright to use:

xi|µ
ind.⇠ N(µ,�

2
)

µ ⇠ N(0, 100), � ⇠ Half-Cauchy(0, 100)

Conversion Back to Original Units

If we use a Bayesian inference engine to do regression analysis for
a model such as:

pricei|�0,�1,�
2 ind.⇠ N

⇣
�0 + �1 agei,�

2
⌘

for data on used cars then

�1 = depreciation rate.

If standardised data used then best to transform �1 to meaningful
units (e.g. dollars per year).

See Exercise 1 of Assignment 6.



BINARY RESPONSE

GROUPED DATA

age (years) centred about average
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Logistic Mixed Models

An example is:

yij|�0,�1,�2,�3
ind.⇠ Bernoulli

✓
1

1 + exp[�{�0 + ui0 + (�1 + ui1)x1ij + �2 x2i}]

◆
,


u0i

u1i

� ������
2
u0,�

2
u1, ⇢u

ind.⇠ N

✓
0

0

�
,


�

2
u0 ⇢u�u0�u1

⇢u�u0�u1 �

2
u1

�◆

Assignment 6, Question 4 has an example of this type.



Let’s look at coding in Stan...

Markov Chain Monte Carlo Making a Difference

Without Markov chain Monte Carlo, fitting logistic mixed models with accurate
inference is VERY HARD due to intractable integrals (even in the non-Bayesian
case).

The availability of Bayesian inference engines makes such analyses routine – but
this is quite a recent development for such an important model.

⌥ ⌥ ⌥


