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SUMMARY

A recent article on generalised linear mixed model asymptotics, Jiang et al. (2022), derived
the rates of convergence for the asymptotic variances of maximum likelihood estimators. If m
denotes the number of groups and n is the average within-group sample size then the asymptotic
variances have orders m−1 and (mn)−1, depending on the parameter. We extend this theory 15

to provide explicit forms of the (mn)−1 second terms of the asymptotically harder-to-estimate
parameters. Improved accuracy of statistical inference and planning are consequences of our
theory.

Some key words: Longitudinal data analysis, Maximum likelihood estimation, Sample size calculations.

1. INTRODUCTION 20

Generalised linear mixed models are a vehicle for regression analysis of grouped data with
non-Gaussian responses such as counts and categorical labels. Until recently, the precise asymp-
totic behaviours of the conditional maximum likelihood estimators were not known for these
models. Jiang et al. (2022) derived leading term asymptotic variances and showed that they have
orders m−1 and (mn)−1, depending on the parameter, where m is the number of groups and n 25

is the average within-group sample size. The main contribution of this article is to extend the
asymptotic variance and covariance approximations to terms in (mn)−1 for all parameters. This
constitutes second term improvement to generalized linear mixed model asymptotics. The poten-
tial statistical payoffs are improved accuracy of confidential intervals, hypothesis tests, sample
size calculations and optimal design. 30

The essence of generalized linear mixed models is the extension of general linear models via
the addition of random effects that allow for the handling of correlations arising from repeated
measures. There are numerous types of random effect structures. The most common is the two-
level nested structure, corresponding to repeated measures within each ofm distinct groups. This
version of generalised linear mixed models, with frequentist inference via maximum likelihood 35

and its quasi-likelihood extension, is our focus here.
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Suppose that a fixed effects parameter in a two-level generalised linear mixed model is ac-
companied by a random effect. Jiang et al. (2022) showed that the variance of its maximum
likelihood estimator, conditional on the predictor data, is asymptotic to C1m

−1 for some deter-
ministic constant C1 that depends on the true model parameter values. The crux of this article40

is to extend the asymptotic variance approximation to C1m
−1 + C2(mn)

−1 for an additional
deterministic constant C2. We derive the explicit form of C2 for two-level nested generalised lin-
ear mixed models for both maximum likelihood and maximum quasi-likelihood situations. Even
though, in general, C2 does not have a succinct form it is still usable in that operations such as
studentisation are straightforward and result in improvements in statistical utility.45

For two-level nested mixed models, (mn)−1 is the best possible rate of convergence for the
asymptotic variance of the estimator of a model parameter. Such a rate is achieved by maxi-
mum likelihood estimators of fixed effects parameters unaccompanied by random effects and
dispersion parameters (e.g. Bhaskaran & Wand, 2023). The current article closes the problem of
obtaining the precise asymptotic forms of the variances, up to terms in (mn)−1, for estimation50

of all model parameters. The achievement of this theoretical outcome has required very many
algebraic steps and order of magnitude verifications beyond those given in Jiang et al. (2022).
For example, three-dimensional arrays and their combination with regular matrices play a central
role. We introduce a new type of array multiplication that streamlines the required manipulations.

55

§ 2 describes the model under consideration and corresponding maximum likelihood estima-
tors. Our second term improvement results are presented in § 3. § 4 describes statistical utility
due to the new asymptotic results. A supplement to this article contains derivational and various
auxiliary details.

2. MODEL DESCRIPTION AND MAXIMUM LIKELIHOOD ESTIMATION60

Consider the class of two-parameter exponential family of density, or probability mass, func-
tions with generic form

p(y; η, ϕ) = exp[{yη − b(η) + c(y)} /ϕ+ d(y, ϕ)]h(y) (1)

where η is the natural parameter and ϕ > 0 is the dispersion parameter. Examples include
the Gaussian density for which b(x) = 1

2x
2, c(x) = −1

2x
2, d(x1, x2) = −1

2 log(2πx2) and
h(x) = I(x ∈ R) and the Gamma density function for which b(x) = − log(−x), c(x) = log(x),
d(x1, x2) = − log(x1)− log(x2)/x2 − log Γ(1/x2) and h(x) = I(x > 0). Here I(P) = 1 if
the condition P is true and I(P) = 0 if P is false. The Binomial and Poisson probability mass
functions are also special cases of (1) but with ϕ fixed at 1. When (1) is used in regression con-
texts a common modelling extension for count and proportion responses, usually to account for
overdispersion, is to remove the ϕ = 1 restriction and replace it with ϕ > 0. In these circum-
stances

{yη − b(η) + c(y)}/ϕ+ d(y, ϕ) (2)

is labelled a quasi-likelihood function since it is not the logarithm of a probability mass function
for ϕ ̸= 1. We use the more general quasi-likelihood terminology for the remainder of this article.
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Consider, for observations of the random pairs (Xij , Yij), 1 ≤ i ≤ m, 1 ≤ j ≤ ni, generalised
linear mixed models of the form,

Yij |Xij , Ui independent having quasi-likelihood function (2) with natural parameter(
β0 +

[
Ui

0

])T

Xij such that the Ui are independent N(0,Σ0) random vectors.
(3)

The Xij are dF × 1 random vectors corresponding to predictors. The Ui are dR × 1 unobserved
random effects vectors, where dR ≤ dF. Under this set-up the first dR entries of the Xij are part-
nered by a random effect. The remaining entries correspond to predictors that have a fixed effect 65

only. We assume that the Xij and Ui, for 1 ≤ i ≤ m and 1 ≤ j ≤ ni, are totally independent,
with the Xij each having the same distribution as the dF × 1 random vector X and the Ui each
having the same distribution as the dR × 1 random vector U .

For any β (dF × 1) and Σ (dR × dR) that is symmetric and positive definite and conditional on
the Xij data, the quasi-likelihood is 70

ℓ(β,Σ) =
m∑
i=1

ni∑
j=1

[{Yij(βTXij + c(Yij)}/ϕ+ d(Yij , ϕ)]−
m

2
log |2πΣ|

+
m∑
i=1

log

∫
RdR

exp

[
1

ϕ

ni∑
j=1

{
Yij

[
u
0

]T
Xij − b

((
β +

[
u
0

])T

Xij

)}
− 1

2u
TΣ−1u

]
du.

The maximum quasi-likelihood estimator of (β0,Σ0) is (β̂, Σ̂) = argmaxβ,Σ ℓ(β,Σ). In practice
computation of (β̂, Σ̂) can be challenging due to intractable dR-dimensional integrals, although
ongoing advances tend to alleviate this problem. We ignore this aspect here and study the the-
oretical properties of the exact maximum quasi-likelihood estimator rather than approximations
to them. 75

Suppose that dF > dR and consider the partition β = [βTA βTB ]
T of the fixed effects parameter

vector, where βA is dR × 1 and βB is (dF − dR)× 1. The dF = dR boundary case is such that βB

is null. Also, let X ≡ {Xij : 1 ≤ i ≤ m, 1 ≤ j ≤ ni}. Theorem 1 of Jiang et al. (2022) implies
that, under some mild conditions, the covariance matrices of β̂A, β̂B and vech(Σ̂) have leading
term behaviour given by

Cov
(
β̂A|X

)
=

Σ0{1 + op(1)}
m

, Cov
(
β̂B|X

)
=
ϕΛβB{1 + op(1)}

mn
, (4)

where n ≡ 1
m

∑m
i=1 ni, and

Cov
(
vech(Σ̂)|X

)
=

2D+
dR
(Σ0 ⊗ Σ0)D+T

dR
{1 + op(1)}

m
. (5)

Here ΛβB is a (dF − dR)× (dF − dR) matrix that depends on β and the (X,U) distribution, DdR is
the matrix of zeroes and ones such thatDdR vech(A) = vec(A) for all dR × dR symmetric matrices
A and D+

dR
= (DT

dR
DdR)

−1DT
dR

is the Moore-Penrose inverse of DdR . The theory of Jiang et al.
(2022) also indicates a degree of asymptotic orthogonality between βA and βB in that E

{
(β̂A −

β0A)(β̂B − β0B)
T |X

}
has Op{(mn)−1} entries, which implies that the correlations between the 80

entries of β̂A and β̂B are asymptotically negligible. For Gaussian responses, Lyu & Welsh (2022)
considered an extension of (3) for which some entries of Xij are constrained to be constant
across all ni measurements within the ith group. For such constant-within-group predictors they
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showed that the asymptotic variances of the corresponding fixed effects parameters are of order
m−1 rather than (mn)−1. This type of extension is not considered here, but is worthy of future85

consideration.
The leading term approximations of the variability in β̂A and vech(Σ̂), given by (4) and (5),

are somewhat crude. Unlike the asymptotic covariance of β̂B, they do not show the effect of
the average within-group sample size n. In the next section we investigate their second term
improvements.90

3. TWO-TERM ASYMPTOTIC COVARIANCE RESULTS

We define the two-term asymptotic covariance matrix problem to be the determination of the
unique deterministic matrices Mβ and MΣ such that

Cov
(
β̂|X

)
=

1

m

[
Σ0 O

O O

]
+
Mβ{1 + op(1)}

mn
and

Cov
(
vech(Σ̂)|X

)
=

2D+
dR
(Σ0 ⊗ Σ0)D+T

dR

m
+
MΣ{1 + op(1)}

mn

under reasonably mild conditions.
An example for which a solution to the two-term asymptotic covariance problem can be ex-

pressed relatively simply is the dF = 2, dR = 1 Poisson quasi-likelihood special case of (3), with
parameters

β = (β0, β1) and Σ = σ2 and predictor variable X = [1 X]T

for a scalar random variable X . Define

a1
(
β0, β1, σ

2
)
≡ eβ0+σ2/2

[
E(X2eβ1X)E(eβ1X)− {E(Xeβ1X)}2

]
and

a2(β1, σ
2) ≡

eσ
2
E
(
X2eβ1X

)
E
(
eβ1X

)
+
(
1− eσ

2)
E{
(
Xeβ1X

)
}2

E
(
eβ1X

) .

Then the two-term covariance matrix of (β̂0, β̂1) is

Cov

([
β̂0

β̂1

] ∣∣∣∣∣X
)

=
1

m

[
(σ2)0 0

0 0

]
+

ϕ{1 + op(1)}
a1
(
β00 , β

0
1 , (σ

2)0
)
mn

[
a2
(
β01 , (σ

2)0
)
−E
(
Xeβ

0
1X
)

−E
(
Xeβ

0
1X
)

E
(
eβ

0
1X
) ]

.

Studentisation of the two-term asymptotic covariance matrix for obtaining confidence intervals95

and Wald hypothesis tests is straightforward. For example, E(X2eβ
0
1X) can be replaced by the

estimator (mn)−1
∑m

i=1

∑ni
j=1X

2
ije

β̂1Xij .
The remainder of this section is concerned with the theoretical problem of obtaining the forms

of Mβ and MΣ for model (3) in general. The achievement of this goal has turned out to be quite
challenging. The score asymptotic approximation approach used in Jiang et al. (2022) requires100

higher numbers of terms to obtain valid two-term covariance matrix approximations. Some of
these terms can only be expressed using three-dimensional arrays rather than with matrices. Suc-
cinct statement of Mβ and MΣ is only possible with well-designed nested function notation. A
novel notation for multiplicative combining of three-dimensional arrays with compatible matri-
ces is also beneficial. The next subsection focusses on these notational aspects.105



Second terms for generalised linear mixed models 5

3.1. Notation for the Main Result
Let A be a d1 × d2 × d3 array and M be a d1 × d2 matrix. Then we let

A⋆M denote the d3 × 1 vector with tth entry given by
d1∑
r=1

d2∑
s=1

(A)rst(M)rs. (6)

Next, for U ∼ N(0,Σ0), define

ΩAA(U) ≡ E
{
b′′
(
(β0A + U)TXA + (β0B)

TXB
)
XAX

T
A |U

}
,

ΩAB(U) ≡ E
{
b′′
(
(β0A + U)TXA + (β0B)

TXB
)
XAX

T
B |U

}
and ΩBB(U) ≡ E

{
b′′
(
(β0A + U)TXA + (β0B)

TXB
)
XBX

T
B |U

}
.

Also let Ω′
AAA(U) be the dR × dR × dR array with (r, s, t) entry equal to

E
{
b′′′
(
(β0A + U)TXA + (β0B)

TXB
)
(XA)r(XA)s(XA)t|U

}
.

and Ω′
AAB(U) be the dR × dR × (dF − dR) array with (r, s, t) entry equal to

E
{
b′′′
(
(β0A + U)TXA + (β0B)

TXB
)
(XA)r(XA)s(XB)t

∣∣U}.
Define the random vectors:

ψ1(U) ≡ vech(Σ− UUT ), ψ2(U) ≡ Ω′
AAA(U)⋆ΩAA(U)−1, ψ3(U) ≡ Ω′

AAB(U)⋆ΩAA(U)−1

and ψ4(U) ≡ D+
dR

vec
(
ΩAA(U)−1Σ−1

{
Σ− UUT − Σψ2(U)UT

})
.

Then define the random matrices:

Ψ5(U)≡ΩAA(U)−1ΩAB(U), Ψ6(U) ≡ ΩBB(U)−Ψ5(U)TΩAB(U),

Ψ7(U)≡UUTΣ−1ΩAA(U)−1, Ψ8(U) ≡ D+
dR

[
(UUT )⊗ {ΩAA(U)−1}

]
D+T

dR

and Ψ9(U)≡ψ1(U)ψ4(U)T + ψ4(U)ψ1(U)T .

Lastly, define the expectation matrices: 110

ΛAA ≡E
{
Ψ7(U) + Ψ7(U)T − ΩAA(U)−1 +ΩAA(U)−1ψ2(U)UT + Uψ2(U)TΩAA(U)−1

}
,

ΛAB ≡E
{
UUTΣ−1Ψ5(U) + Uψ2(U)TΨ5(U)− Uψ3(U)T

}
and

∆≡E
([

Ψ5(U)T
{
Σ−1U + ψ2(U)

}
− ψ3(U)

]
ψ1(U)T

)
.

3.2. Assumptions for the Main Result
The main result depends on the following sample size asymptotic assumptions: the number

of groups m diverges to ∞; the within-group sample sizes ni diverge to ∞ in such a way that
ni/n→ Ci for constants 0 < Ci <∞, 1 ≤ i ≤ m; the ratio n/m converges to zero. The last
of these conditions is in keeping with the number of groups being large compared with the 115

within-group sample sizes, as often arises in practice. For our asymptotics it ensures that, for
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the harder-to-estimate parameters, the asymptotic variances of the maximum likelihood estima-
tors have leading terms of the form C1m

−1 + C2(mn)
−1. In addition, it ensures that the Fisher

information is sufficiently dominant for obtaining asymptotic variances.
We also assume that the (X,U) joint distribution is such that all required convergence in prob-120

ability limits that appear in the deterministic order (mn)−1 terms are justified. The determination
of sufficient conditions on the (X,U) distribution that guarantee the validity of the main result is
a tall order, involving the determination of at least eighteen additional moment-type conditions
for results similar to Lemma A1 of Jiang et al. (2022), and beyond the scope of this article.

3.3. Statement of the Main Result125

Using the notation presented in § 3.1 and under the assumptions described in § 3.2, and as-
suming dF > dR we have

Cov
(
β̂|X

)
=

1

m

[
Σ0 O

O O

]
+

ϕ

mn

[
Λ−1

AA Λ−1
AA ΛAB

ΛT
ABΛ

−1
AA ΛT

ABΛ
−1
AA ΛAB + E

{
Ψ6(U)

}
]−1

{1 + op(1)}

and Cov
(
vech(Σ̂)|X

)
=

2D+
dR
(Σ0 ⊗ Σ0)D+T

dR

m

+
ϕ

mn

(
2E
{
Ψ9(U)− 2Ψ8(U)

}
+∆T

[
E{Ψ6(U)}

]−1
∆
)
{1 + op(1)}.

(7)

For the dF = dR boundary case the first term of Cov
(
β̂|X

)
is simply 1

mΣ0. A supplement to this
article contains a full derivation of (7).

In the Gaussian response special case we have b′′(x) = 1 and b′′′(x) = 0 and the main result
reduces to the following succinct form:

Cov
(
β̂|X

)
=

1

m

[
Σ0 O

O O

]
+
ϕ
{
E(XXT )

}−1{1 + op(1)}
mn

and

Cov
(
vech(Σ̂)|X

)
=

2D+
dR
(Σ0 ⊗ Σ0)D+T

dR

m
+

4ϕD+
dR

[
Σ0 ⊗ {E(XAX

T
A )}−1

]
D+T

dR
{1 + op(1)}

mn
.

4. UTILITY OF THE SECOND TERM IMPROVEMENTS

The second term improvements of (7) have ready and straightforward applications to confi-
dence intervals, Wald hypothesis tests and sample size calculations. Optimal design is another
possible utility, but would require second term improvements of the type of theory given in § 5
of Jiang et al. (2022).

We conducted a simulation exercise aimed at understanding potential practical impacts of sec-
ond term improvements to generalized linear mixed model asymptotics. Data sets were generated
from the dF = 5 and dR = 2 logistic mixed model

Yij |X1ij , X2ij , X3ij , X4ij , Ui independently distributed as

Bernoulli
(
1/
(
1 + exp[−{β00 + U0i + (β01 + U1i)X1ij + β02X2ij + β03X3ij + β04X4ij}]

))
,

where the
[
U0i

U1i

]
are independent N(0,Σ0) random vectors, 1 ≤ i ≤ m, 1 ≤ j ≤ n.
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The ‘true’ parameter values were set to

(
β00 , β

0
1 , β

0
2 , β

0
3 , β

0
4

)
= (0.35, 0.96,−0.47, 1.06,−1.31) and Σ0 =

[
0.56 −0.34

−0.34 0.89

]

and the predictor data were generated from independent Uniform distributions on the unit in-
terval. The simulation design is such that the asymptotic variance of β̂1, corresponding to the
fixed effect of the X1 predictor, benefits from second term improvement. The true β0 vector was
chosen so that there was a variety of strengths of predictor fixed effects. We selected the Σ0

matrix to ensure that there was a significant amount of heterogeneity in the random intercepts
and slopes. In our reporting of simulation results we use the following standard deviation and
correlation parameterisation: σ01 ≡ (Σ0

11)
1/2, σ02 ≡ (Σ0

22)
1/2 and ρ0 ≡ Σ0

12

/
(σ01σ

0
2). To assess

potential large sample improvements afforded by the two-term asymptotic covariance expres-
sions at (7) we varied m over the set {100, 150, . . . , 500} and fixed n at m/10. For each (m,n)
pair we then simulated 500 replications and obtained approximate 95% confidence intervals for
all model parameters according to the approach described in § 4 of Jiang et al. (2022) and the
second term improvements arising from (7). The confidence intervals for σ01 and σ02 involved use
of asymptotic normality results for logarithms of these parameters, followed by exponentiation.
Similar remarks apply to ρ0 but with use of tanh−1 and tanh functions. The requisite bivari-
ate integrals were obtained using the function hcubature() within the R language package
cubature (Balasubramanian et al., 2023). The point estimates, which were obtained via the R
language package glmmTMB (Brooks et al., 2023), use Laplace’s method to approximate bi-
variate integrals. 130

Note that the confidence intervals for β00 , β01 and the entries of Σ0 differ according to the two
asymptotic theory approaches since the estimators of these parameters have order m−1 asymp-
totic variances. The confidence intervals for β02 , β03 and β04 are unaffected by the second term
asymptotic improvements since their estimators have order (mn)−1 asymptotic variances.

Figure 1 compares the empirical coverages of confidence intervals with advertised levels of
95% for the one-term asymptotic variances of Jiang et al. (2022) and the two-term asymptotic
variances that arise from (7). In Figure 1 we only consider the parameters that are affected by
second term improvement. The empirical coverages for the other parameters are provided in the
supplement. For comparison with existing software products, the empirical coverages for the
glmmTMB confidence intervals are also shown in Figure 1. For β00 , β01 and σ01 there is close
correspondence between the two-term and glmmTMB confidence intervals. For σ02 and ρ0 and
lower values of m, the two-term confidence intervals are prone to some under-coverage whilst
glmmTMB has empirical coverages above the advertised level.

It is clear from Figure 1 that our second term improvements lead to much better coverages
for lower sample size situations. On the other hand, one-term confidence intervals are trivial
to compute whilst the two-term versions require considerable computing involving numerical
integration.

Simulation results such as those summarised by Figure 1 provide an appreciation for the prac-
tical trade-offs arising from precise asymptotics for generalised linear mixed models.
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Fig. 1. Empirical coverage of confidence intervals from the simulation exercise described in the text. Each panel
corresponds to a model parameter that is impacted by second term asymptotic improvements. The advertised
coverage level is fixed at 95% and is indicated by a horizontal dotted line in each panel. The solid curves show,
dependent on the number of groups m, the empirical coverage levels for confidence intervals based on each
of the three approaches. The dashed curves correspond to plus and minus two standard errors of the sample

proportions. The within-group sample size, n, is fixed at m/10.

SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online contains derivational details and addi-
tional simulation results.
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