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Abstract: We study the finite sample performance of kernel density estimators through exact mean integrated squared error formulas 

when the data belong to an infinite order moving average process. It is demonstrated that dependence can have a significant 

influence, even in situations where the asymptotic performance is unaffected. 
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1. Introduction 

Nonparametric density function estimation has 
traditionally been studied under the assumption 
that the observations are independent. However, 
more recently there has been considerable interest 
in the performance of density estimators when the 
assumption of independence is violated. A theoret- 
ically convenient setting to study such a problem 
is to assume that the real-valued random variables 
X,, . . . , X, are part of a particular stationary pro- 
cess with marginal density f which is to be esti- 
mated using a kernel estimator of the form 

f^(x; h) = .-’ e K,(x - XJ. (1.1) 
j=l 

Here K,,(u) = h-'K( u/h), K is a kernel function, 
usually a symmetric probability density function, 
and h > 0 is a smoothing parameter, often re- 
ferred to as the window width or bandwidth. An 

appropriate measure of distance between {( 0; h) 
and f is mean integrated squared error (MISE) 
given by 

MISE(h) = El{ fix; h) -f(x)}’ dx. 

An important recent contribution to this topic 
is due to Hall and Hart (1990) who derived the 
asymptotic behaviour of MISE(h) when the data 
are generated by an infinite order moving average 
process, sometimes called a linear process. Such 
processes are quite important since they include 
many other ARMA dependence models. One of 
the noteworthy consequences of the results of Hall 
and Hart is that if the data exhibit only short-range 
dependence (a concept which will be made precise 
in Section 3) then asymptotically the MISE be- 
haves the same as it would if the data were inde- 
pendent. This is in the spirit of earlier work refer- 
enced by these authors including Rosenblatt 
(1970) Chanda (1983) Hart (1984) Robinson 
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(1986) and Castellana and Leadbetter (1986). See 
also the recent monograph of Gybrfi, Hardle, 

Sarda and Vieu (1990) for results of this type. In 
situations such as these the first order asymptotics 
give us no insight intoJhe effects of dependence 
on the performance of f(. ; h). However, for finite 
samples it is obvious that any type of dependence 
will have some, and perhaps a significant, in- 
fluence on fi *; h). This is supported by the work 
of Hart (1984) who derived finite sample expres- 
sions for the MISE of the Fourier integral density 
estimator for the case where the data are serially 
correlated. There it was shown that even for rela- 
tively large sample sizes positive serial correlation 
often has a marked effect on MISE despite the 
dependence being short-range. 

In this article we investigate more general set- 
tings where finite sample MISE calculations are 
tractable. We show that the moving average de- 
pendence model used by Hall and Hart (1990) is 
particularly useful for this purpose which also 
allows comparison of their asymptotic results with 
the finite sample equivalent. The case where the 
observations are Gaussian is seen to provide a 
significant simplification in the explicit formula- 

tion of the MISE. 
Another important contribution of the work of 

Hall and Hart (1990) is that if the data are long 
range dependent then it is possible for the conver- 

gence rates of {( .; h) to be worsened by the 
dependence. The exact MISE formulas developed 
here also apply to these situations and can be used 
to see how well the asymptotics describe the be- 
haviour of MISE for finite samples. 

In Section 2 we describe exact MISE calcula- 
tions in general. These are applied to moving 
average dependence models in Section 3. Section 4 
contains particular examples of exact MISE calcu- 
lations which demonstrate their role in under- 
standing density estimation under dependence. 

2. Exact MISE calculations 

Explicit MISE formulas for density estimation 
were first obtained by Fryer (1976) and Deheuvels 
(1977) in the case of independent data. Let 

MISE,(h) denote the MISE of an independent 

sample of size n having density f. Then we have 

MISE,( h) = n-‘h-’ jK2+(1-nn’)J(Kh*f)2 

(2.1) 

Fryer and Deheuvels observed that this reduces to 
a particularly simple form if both f and K are 
taken to be the normal density. This idea was 
extended by Marron and Wand (1992) to the case 
where f is an arbitrary mixture of normal densi- 
ties and K is a higher-order Gaussian-based kernel 
(Wand and Schucany, 1990). Since virtually any 
density shape can be formed by mixing normal 
densities Marron and Wand were able to study the 
finite sample performance of kernel density esti- 
mators for a wide variety of density types. 

Our goal here is to investigate those situations 
where exact MISE expressions are available for 

stationary dependent data. Let 4, and #K be, 
respectively, the characteristic functions corre- 
sponding to f and K and let Re(z) denote the 
real part of the complex number z. Then the 
required extension of (2.1) is: 

Theorem 1. If X,, . . . , X, is from a stationary pro- 

cess { Xj: - CO <j < CCI} then for the kernel esti- 

mator (2.1), 

MISE( h) = MISE,( h) 

+T-‘n-’ i (l- ~)/l+n(hr)I* 
j=l 

xRe E exp(it( Xjcl - X1)} 

- 14,(t) I’] dt (2.2) 

where MISE,(h) is given by (2.1). 0 

The proof of this result follows directly from 
Lemma 4.1 of Hall and Hart (1990). Theorem 1 
shows that, for dependent data, the MISE is com- 
posed of the MISE if the data were independent 
plus a term which represents the cost due to 
having dependence in the sample. It is easily seen 
that in the case of independence the terms inside 
the square brackets in (2.2) cancel each other 
giving MISE(h) = MISE,(h) as expected. The 
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prospects of obtaining explicit MISE expressions 
for dependence models can be appreciated through 
closer inspection of this first term which is simply 
the characteristic function of the lag j difference 

X ,‘I - X1. In the next section we investigate those 

situations where this quantity is manageable. 
A closely related density estimator is the Four- 

ier integral estimator which can be expressed in 
the form (1.1) with K replaced by the ‘sine’ kernel 
K(x) = sin x/(71x). This kernel is not a probabil- 
ity density and also not of finite order (the order 
of a kernel is defined to be the order of its first 
non-vanishing moment). Davis (1981) was able to 
obtain explicit MISE formulas in the independent 
data case for certain densities. Hart (1984) consid- 
ered the case where the data are generated by a 
first order autoregression and was also able to 
obtain explicit MISE formulae for certain densi- 

ties. 

3. Moving average dependence models 

A wide variety of dependence situations can be 
studied by supposing that the observations 
X,, . . , X, are from a moving average process, 

X,=p+ E akZ,-k 
k=-m 

(3.1) 

where the 2,‘s are independent and identically 
distributed with zero mean and finite variance and 
the coefficients satisfy &a: < co. 

For this model Hall and Hart (1990) showed 
that if certain regularity conditions are met then 

MISE( h) - MISE,( h) + Var( x)/( f’)’ (3.2) 

as n -+ cc where X=n-‘C,“_,X, is the sample 
mean. Result (3.2) gives important insight into the 
effect of moving average dependence on MISE. If 
the dependence is short range, which is often 
taken to mean that &a, < co, then Var( x) = 

O(n -I) which converges to zero faster than the 
best possible rate attainable by MISE,(h) so the 
optimal convergence rate of fi. ; h) is unaffected 
by dependence. However, as Hall and Hart dem- 
onstrate, there are situations when Var( x) con- 
verges slower than MISE,(h) which implies that 

the second term governs the optimal rate of con- 
vergence of MISE,(h). A necessary condition for 
this is that the dependence is long-range (&a, = 
co). We will discuss situations where this phenom- 
enom occurs in the next section. 

Another noteworthy point from (3.2) is that the 
second term on the right hand side does not 
depend on the window width h. Therefore the 
window width which minimises the asymptotic 
MISE is the same regardless of the type of depen- 
dence. 

We now investigate an important situation 
where explicit finite sample expressions for 
MISE(h) are readily available. Recall from (2.2) 
the dependence of MISE(h) on the lag j dif- 
ference Xj + i - X,. For the moving average pro- 
cess defined by (3.1) we have 

k=-m 

To apply (2.2) we need to know the distributional 
form of Xj + i - Xi. Suppose we take the Zk’s to be 
N(0, 1) random variables. Then in this case 

xj+l - Xl - N(0, 0;) 

where 

*= a/ f (aJ+k-ak)2 

k=-cc 

After some algebra Theorem 1 gives 

~T”~MISE( h) 

= 1 + (1 + h2)-1’2 - 23/2(2 + h*)-l’* 

+ n-‘h-l - n-‘(1 + h*) 
-l/2 

(3.3) 

+2n-* f: (1- f), 
j=l 

x((fa,2+h2)-1’2-(1+h2)-“2} (3.4) 

which is of a very manageable form. Of course, 
the assumption that the Zk’s are N(0, 1) implies 
that the XJ’s are also Gaussian which seems some- 
what restrictive. In fact, it appears that, in general, 
taking the Zk’s to be non-Gaussian leads to either 
very cumbersome or completely intractable calcu- 
lations. However, since the main aim of this article 
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is to study the effect of dependence on the perfor- 
mance of fi.; II), rather than the effect of density 
shape (as in Marron and Wand, 1990, for exam- 

ple) the moving average Gaussian setting can still 
be a very useful tool, as we demonstrate in the 
next section. 

4. Examples 

In this section we show by example how the 
moving average Gaussian model can be used to 
understand the influence of dependence on den- 
sity estimation. 

We commence with the first order autoregres- 
sion model, usually abbreviated as AR(l), and 
given by 

x, = px,_, + (1 - p*)1’2zj, -oO<j~Ci3, 

(4.1) 

where the Zj’s are independent N(0, 1) random 
variables and 1 p 1 -c 1. The scaling here is such 
that the Xj’s are also N(0, 1). Data of this form 
are often referred to as being serially correlated. 
To use results from the previous section we first 
invert (4.1) to obtain 

x, = (1 - p*)-l f pkZ,_k. 
k=O 

From (3.3) and (3.4) it can be shown that 

MISE(h; p) 

= MISE,( h) 

+ 71-1/*n-l i (1-i) 
j=l 

x((l-pp’+h2)-i’*-(l+hZ)-i’*). 

(4.2) 

Here the effect of the correlation parameter p on 
MISE is quite lucid. For 0 < p < 1 the difference 
inside the curly brackets of (4.2) is positive and 
increasing in p which indicates that the cost due 
to positive serial correlation becomes larger as the 
correlation becomes stronger. For negative p the 
sign of this difference depends on whether the 
summation index j is even or odd so the influence 

ho(h) 

Fig. 1. Graphs of MISE(h) versus log,,,(h) for the Gaussian 

AR(l) example with n = 50; p = 0.9,0.5, -0.5, -0.9 and 0.0. 

of negative correlation is not as straightforward 
and there exists the possibility of it having a 
negative cost. 

Figure 1 shows a plot of MISE(h) versus 
log,,(h) for various values of p when n = 50. This 
sample size was chosen because it corresponds to 
a small sample where the kernel estimator can be 
expected to perform reasonably well when esti- 
mating the Gaussian density with an independent 
sample. For p = 0.5 the curves look fairly similar, 
however in terms of vertical distance there are 
appreciable differences. In particular at the 
minimum it is seen that there is about a 50% 
increase in MISE due to the dependence. This 
phenomenom is much more pronounced when p 

= 0.9 with the minimum MISE being about 4 
times that for the independent data case. This is 
not too surprising since as p approaches one the 
information in the sample reduces towards a single 
data point. An interesting feature of the MISE 
curve when p = -0.5 is that it is actually slightly 
lower than for the independent case around their 
minima. This indicates that negative serial correla- 
tion can actually enhance the performance of den- 
sity estimators. This was observed by Hart (1984) 
who explained that the negative correlations cause 
a ‘balancing’ effect with the observations more 
likely to be symmetric about the mean than in the 
case of independence. However, when the negative 
correlation is high there is a positive cost in terms 
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of MISE as shown by the curve corresponding to 
p = -0.9. 

Another intuitive way of understanding the ef- 
fect of independence is to compute equivalent 
sample sizes. We computed the minimum MISE 
for a random sample of size 50 and then, for 
various values of p, computed the sample sizes 
required for that same minimum MISE to be 
attained. These are displayed in Table 1. It is seen 
that positive serial correlations can have quite a 
significant cost in terms of sample size, while for 
weak negative lrrelations a reduced sample size 

can match the performance of an independent 
sample. 

We can also use (4.2) to compare the asymp- 
totic theory for rates of convergence to the 
finite sample rate of decrease. For the AR(l) 
Gaussian model results of Hall and Hart (1990) 
imply that for all 1 p 1 -c 1, inf, ,,MISE(h) = 

inf, , 0 AMISE(h){l + o(l)} as n -+ cc where 

mfgAMISE(h) = i($)1’5K1’2n-4’5 (4.3) 

is the minimum asymptotic MISE. In Figure 2 
inf h ,,AMISE(h) is plotted on a log-log scale 
(to base 10) along with inf, ,,MISE(h; p) for 
p = 0, 0.5, 0.9. The curve corresponding to 

inf, , a AMISE(h) (dotted curve) is a straight line 
with slope - : as indicated by (4.3). We see that 
for the independent data case (p = 0, the dot-dash 
curve) the behaviour of inf, , ,MISE( h) is close to 
the asymptotic version for n greater than about 
100. The same is true for p = 0.5. However, for the 
larger values of p there is quite a significant dif- 

Table 1 

Minimum sample sizes required to achieve inf,, ,MISE( h; p) 

< inf, ,,MISE(h; 0) for the AR(l) Gaussian example. The 

quantity inf, , e MISE(h; 0) is the minimum MISE for an inde- 

pendent N(0, 1) sample of size n = 50. 

P ” 

-0.9 132 

- 0.6 46 

- 0.3 42 

0.0 50 

0.3 67 

0.6 116 

0.9 486 

Y- . 

inf MISE(h;p=0.50) 

inf MISE(h;p=0.90) 

.-.-. inf MISE(h) 

‘p 
--___ inf AMISE(h) 

1 
1.0 1.5 2.0 2.5 3.0 3.5 4.0 

lo91004 

Fig. 2. Graphs of log,,(inf, , a MISE(h; p)) versus log,,(n) for 
the Gaussian AR(l) example with p = 0.0, 0.5 and 0.9. The 

graph of log,,{inf, , e AMISE( h)} is also included. 

ference between the finite sample curves and the 
asymptotic curve, even for n as high as 10000. 

These results corroborate the findings of Hart 
(1984) for the Fourier integral kernel estimator. 
Note that it is possible to perform similar calcula- 
tions for other AR(p) models by first inverting to 
moving average form and then applying the re- 
sults from the previous section. 

Our second set of examples will be for a model 
where the data exhibit long-range dependence. 
For : < CY < 1 consider the moving average process 

xj = [(2a) -1’2 f k-“Zj_k (4.4) 
k=l 

where l(s) = E~=‘=,k-” is the Riemann zeta func- 
tion. Since C~+k-” = cc for (Y < 1 the data are 
long-range dependent. Again we shall take the 
Zk’s to be N(0, 1) so that the X,‘s follow the same 
law. Results of Hall and Hart (1990) dictate that 
the best possible rate of convergence of MISE is 
nPmin(‘-2a,4/5) so for i < CY < & the dependence is 
sufficiently strong to worsen the optimal rate. We 
will focus on (Y = a for which inf, , ,MISE( h) goes 
to zero at a rate proportional to n-I’*. In this case 
the MISE is given by (3.4) where 

uI’= {S;(l) +s(j)}/S(+), 

lj(;) = i k-3/2 
k=l 
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ho(h) 

Fig. 3. Graphs of MISE(h) versus log,,(h) for the zeta func- 
tion example with n = 1000 and OL = i. 

and 

s(j) = 5 {k-3’4- (k+j)p4}*. 
k=l 

For exact MISE calculations the constants 
{s(j): j= l,..., n } need to be computed numeri- 

cally, however it is straightforward to obtain in- 
tegral-type bounds on the error of finite term 
approximations to the s(j)‘s and these computa- 
tions need only be done once. 

0,“““. . . 0.. . . I.. . . , 

r 
.E 
g* I 

inf MISE(h;3/4) 

2’ ---- inf MISE(h) 

.-.-.-.- inf AMISE(h) 

. . . . . . . . . . . . . . . . 1 /dn 

P 1 
1.0 1.5 

log%) 

2.5 3.0 

Fig. 4. Graph of log,,,{inf,, ,MISE(h)) versus log,,(n) for the 
zeta function example, a= i. Also included are graphs of 

log,O(inf,, ,,MISE(h)} and log,,{inf, , ,AMISE( h)) under 
independence and log,,(n-I/*). 

Figure 3 shows the MISE curves for the model 
described by (4.4) with cx = : when n = 1000. It is 
seen that there is a substantial cost due to the 
dependence. Another noteworthy point is that the 
optimal window widths differ by a factor of about 
0.4 for this sample size even though they are equal 
in the limit. 

To compare the respective rates of convergence 
we again plotted inf, , ,MISE( h) versus n (on a 
log-log scale) for this particular model to form 
Figure 4. Here we see that the curve representing 
inf ,, ,OMISE(h) (solid curve) for the long-range 
dependence model has a much gentler slope than 
that for independence (dashed curve). The dotted 
line represents the rate n-r/* and it is seen that 
the slope of the solid line is tending to have a 
similar slope at n = 1000 as the theory suggests. 

5. Conclusions 

We have demonstrated that exact MISE calcula- 
tions can give important insights into the effect of 
dependence on the performance of density estima- 
tors which cannot be realized through asymptotic 
analysis. The moving average Gaussian setting 
allows particularly simple calculations for a variety 
of dependence types. 
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