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SUMMARY 

The optimal amount of smoothing in penalised spline regression is investigated. In particular, a 
simple closed form approximation to the optimal smoothing parameter is derived. Comparisons 
with its exact counterpart show it to be a useful starting point for measuring the optimal amount 
of smoothing in penalised spline regression. It also lends itself to the development of quick and 
simple rules for automatic smoothing parameter selection. 

Some key words: Asymptotic approximation; Automatic smoothing parameter selection; Nonparametric 
regression; Quick and simple smoothing parameter selection; Regression spline. 

1. INTRODUCTION 

Figure 1 shows a scatterplot smooth of data from an air quality monitoring study using the 
Light Detection and Ranging (LIDAR) technique. The vertical variable is a measure of cumulative 
particle concentration and the horizontal variable is the range of the measuring device. The full 
details of the data are described in Holst et al. (1996). The fitted curve is based on the penalised 
spline approach to smoothing which has received considerable recent attention because of its 
simplicity and effectiveness at tackling a wide range of semiparametric regression problems; see for 
example Eilers & Marx (1996) and recent unpublished work by D. Ruppert and R. J. Carroll. 

The amount of smoothing in Fig. 1 was chosen not by eye, but from the data with only a minimal 
amount of user interaction. In particular, the choice involved nothing more than simple direct 
computations. No numerical minimisation or root-finding was required. This is in the spirit of 
quick and simple rules for selection, for example, of the histogram bin width (Scott, 1979) and the 
bandwidth of a kernel regression smooth (Hardle & Marron, 1995). Such rules rely on closed form 
approximations to the 'optimal' smoothing parameter. The purpose of this note is to show how 
such an approximation can be derived for penalised spline smoothing. 

Section 2 presents some theory aimed at obtaining a closed-form approximation to a theoretically 
optimal smoothing parameter. The result is evaluated in ? 3 and then applied to derive a quick 
and simple rule for choosing the smoothing parameter from the data. 

2. THEORETICAL RESULTS 

2 1. Basicformulation 
Consider the nonparametric regression set-up 

y = m(xi) + ei, 

where (xi, Y) is a set of regression data, m is the regression mean function and ei is the error 
variable for observation i. For now we will assume that the errors are uncorrelated and have 
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Fig. 1. Quadratic penalised spline smooth of the LIDAR data 
(solid curve). The dashed curves correspond to a rough initial 
estimate used for smoothing parameter selection described in 
? 3 2. The regression spline basis functions are shown at the 

base of the plot. 

constant variance equal to 52 We can write this model in matrix notation as 

Y =m + , COV(?) =o2I, 

where Y denotes the vector of responses, m iS the vector of means at the data and ? iS the vector 
of errors. 

A degree-p penalised spline estimate of m is 
m = X(XTX?+ 2PD)-lXT Y (1) 

where 

K X- 6 b . . .. . , - =K), 1K 

Here K1,. .., ZCK is a set of knots. In penalised spline regression, these are normally chosen to be 
quite 'dense' in the interval over which the xi's range, as depicted in Fig. 1, so that the mean 
function can adequately be resolved. The amount of smoothing is controlled by the parameter 
A >0O. The choice A = 0 leads to an ordinary least squares fit with design matrix X, which tends to 
overfit the data. As A{ becomes very large, 4j approaches the pth degree polynomial fit. A value 
between these two extremes is usually desirable. The power of 2p on the A ensures that A acts as 
a scale parameter in that any linear transformation of the design variable should be accompanied 
by the same linear transformation of A to preserve the value of mh. 

Note that the penalty imposed by the matrix D is one of many possible penalties. This is a very 
simple one, based on constraining the sum of squares of the knot coefficients and advocated by 
Eilers & Marx (1996) and in recent unpublished work by D. Ruppert and R. J. Carroll. The most 
common alternative is the smoothing spline penalty, which is related to the integrated squared 
derivative measure of roughness, e.g. Green & Silverman (1994, Ch. 2). 

A mathematically convenient measure of the global discrepancy between ij and m iS the mean 
average squared error, 

MASE(11) n E ~- ~ {ih(x~) - m(xi)}2j. 

MASE(mA) = E n E {m(xE)-m(xE)} 0 
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It is well known that MASE(m1) has the decomposition 

1 n 1 
nM(X)I2 

- Z var{im'(xi)} + - Z {EM,(xi) -m(xi)}, 
ni=1 n~ 

the first term representing the average variance and the second representing the average squared 
bias. 

2 2. Exact mean average squared error 
A useful notation is HA = X(XT X + )2PD)- 1XT, So that MA = HA Y. This shows that m'A is a linear 

smoother with smoother matrix equal to HA. If we use the notation 11 v . = V(VT v), then 
2 1 

MASE(M A) = tr(HA) +-1 (HA-I)m I 2 (2) 
n n 

the terms representing, respectively, the average variance and average squared bias components. 
The theoretical optimal smoothing parameter is then 

IMASE = argmin MASE (M) (3) 
A>0 

and can be found using (2) and numerical minimisation. 

2 3. Asymptotic approximation 
There are several reasons for wanting a closed-form asymptotic approximation to XMASE. The 

first is to provide something that is quick and simple to compute. If however IMASE iS still required 
then an asymptotic approximation will usually provide a good starting value for the numerical 
minimisation problem. Finally, it can be used to develop data-driven rules for selection of the 
amount of smoothing, as described in ? 3. Such rules can also be used to find a good starting value 
when computing traditional smoothing parameter selectors such as generalised crossvalidation 
(Craven & Wahba, 1979). 

In the Appendix it is shown that the first few terms in the asymptotic expansion of MASE(mA) as 
i->O are 

AMASE(1?) = -((p + K + 1) - 22 tr{(XTX)<D} + ' 
4P tr[{(XTX) -D}2) n 

+- I|X(XTX lD(XTX)-lXTm 2,(4) n 

where AMASE stands for asymptotic MASE. The minimiser of this quantity is 

/ 5~~~~2 tr I(XT X)- 'DI 011(2p) 5 
XAMASE = ( 

X(XT X) D(XT X) 1XT m 112 + 2 tr [{(XTX)1D}2 
) (5) 

For a given m and U2, (5) provides an easy-to-compute approximation to the MASE-optimal 
smoothing parameter. 

2 4. Other bases 
The penalised spline (1) is defined with respect to the truncated polynomial basis for the space 

of piecewise pth degree polynomials over the knots Kl, . . ., KK, and represented through the matrix 
X. It is possible to redefine M A in terms of other bases such as the B-spline basis (Eilers & Marx, 
1996) and the Demmler-Reinsch basis (Nychka & Cummins, 1996). The asymptotic approximations 
are easily adjusted to handle these alternative bases. All that is required is the introduction of the 
(p + 1 + K) x (p + 1 + K) matrix L that maps X to the corresponding X-matrix for the new basis, 
Xnew = XL, and the substitution X = XnewL U'. 
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2-5. Further approximation 
The terms in (4) could be approximated further by studying the asymptotic behaviour of X as 

n -+ oo. This would presumably result in expressions that show the effect of U2, m and the distribution 
of the design variables more explicitly, in the spirit of asymptotic results for kernel smoothing, e.g. 
Tsybakov (1986). Preliminary investigations along these lines suggest that the first multiplier of 
24P in (4) is of lower order than the second multiplier of 24P as n -? oo. Therefore, from an asymptotic 
point of view, the first of these terms could be dropped and the one-term approximation to ,MASE, 

a2 tr{(XTX)-lD} ]1/(2p) 

XAMASE 

1 

| X(XT 
X)-lD(XT 

X) 
- 

lXTm 

1 
would result. While it appears that AAMASE,1 is asymptotically equivalent to AAMASE, there is a 
distinct finite sample difference. Comparisons between the two, described in ? 3 1, indicate that the 
two-term approximation is superior in practice. 

Further asymptotic analysis along these lines may aid the interpretation of the effect of A on the 
performance of mA. However, it is not clear that it will have any practical benefit, beyond that 
provided by (4). 

2 6. Heteroscedastic errors 
If the errors are heteroscedastic, or even correlated, then we have cov(e) = V for some symmetric 

positive definite matrix V. The mathematics used to produce (4) and (5) is easily generalised to 
cater for this extension. In particular (4) becomes 

' zAMASE tr {(XT X)-1XT VX(XT X)-1D} 1/(2p) 
AAMASE= K IIX(XTX)-<D(XTX)-lXT m12 + tr[(XTX)lXT VX{(XTX) 1D}21) 

3. PRACTICAL IMPLICATIONS 
3 1. Accuracy of ,AMASE 

To assess the accuracy of (5) we computed it for each of the 18 homoscedastic regression settings 
used in Wand (1999). A reasonably meaningful measure of the quality of IAMASE iS 

MASE(m)AAMASE)/inf MASE(mA)- 

The average value of this ratio for these examples is 1 31 with a standard deviation of 0218, 
indicating that XAMASE provides a reasonable approximation to the optimal amount of smoothing. 
For the one-term approximation the average ratio is 1 41 with a standard deviation of 0 274 so it 
therefore seems worthwhile to use the two-term expression (5). 

3-2. A quick and simple smoothing parameter selector 
A quick and simple rule for choosing A can be obtained by replacing m and a 2 in (5) by Minit 

and init, representing rough but reasonable initial estimates. As suggesting by Hardle & Marron 
(1995), an effective means of obtaining such estimates is to divide the data into blocks and fit low- 
degree polynomials to each block. Obtaining a reasonable initial estimate is crucial and a small 
amount of user intervention, via graphical inspection, is desirable to ensure this. The dashed lines 
in Fig. 1 show an initial estimate of m biased on fitting cubic polynomials to the two blocks of 
data to the left and right of their horizontal midpoint. 
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APPENDIX 

Derivation of(4) 
Suppose that A -0. To aid readability we let oc = 2'p. Then using the expansion 

(I + ocA)- = I - ocA + o2A2 - 

we obtain the approximation 

H. HoH - oG + o(oG), 

where G = X(XT X) - lD(XT X) - lXT . The bias can then be written as 

Ham-m=-ocGm+mx-m+o(cG), (At) 

where mx = Hom is the projection of m on to the column space of X. The average squared bias 
therefore has the approximation 

1 1 
- Hm-m 2 = {1 Gm 112 - 2(Gm)T (mx-m) + mxm 112}. n n 

Approximation (Al) can also be used to approximate tr(H 2) and obtain the first term on the 
right-hand side of (4). The full expression then follows by assuming that the approximation error 
mx- m is negligible. Such an assumption is reasonable when the knots are densely packed, relative 
to the curviness of m. 
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