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Fast Computation of Multivariate
Kernel Estimators

M. P. WanDp*

Multivariate extensions of binning techniques for fast computation of kemel es-
timators are described and examined. Several questions arising from this multivariate
extension are addressed. The choice of binning rule is discussed, and it is demonstrated
that linear binning leads to substantial accuracy improvements over simple binning. An
investigation into the most appropriate means of computing the multivariate discrete con-
volutions required for binned kemel estimators is also given. The results of an empirical
study indicate that, in multivariate settings, the fast Fourier transform offers considerable
time savings compared to direct calculation of convolutions.

Key Words: Binning rules; Fast Fourier transform; Multivariate density estimation;
Naonpararmetric regression.

L. INTRODUCTION

Multivariate kernel smoothing methods have tremendous practical potential as a sim-
ple means of recovering and highlighting structure in high-dimensional data sets, without
the restrictions of parametric models; see, for example, Scott (1992). The applicability of
kernel estimators is greatly enhanced by having their computational times kept to a mini-
mum. This has motivated a considerable amount of recent research into the development
of fast and efficient algorithms for their computation. Comprehensive expositions of this
work are given by Fan and Marron (1994) and Seifert, Brockmann, Engel, and Gasser
{1994) where it is demonstrated that, in the univariate case, fast computational methods
can lead to savings of factors well into the hundreds. In this article we investigate a
number of practical issues concerning the multivariate extension of one such fast kernel
estimate — the binned or WARPed approximation. This is based on ideas first developed
by Silverman (1982}, Scott (19835}, and Hirdle and Scott (1992). Other early references
are Hirdle (1986) and Georgiev (1986).

Binned kernel estimates are usually computed over an equally-spaced mesh of grid
points. The same ideas can be applied to obtain quickly computable approximations to
kernel functional estimates, which arise in many common automatic bandwidth selection
algonthms. Their calculation requires three distinct steps:
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434 M. P. Wann

1. Bin the data by assigning the raw data to neighboring grid points to obtain grid
counts. A grid count can be thought of as representing the amount of data in the
neighborhood of its corresponding grid point.

2. Compute the required kernel weights. The fact that the grid points are equally
spaced means that the number of distinct kernel weights is comparatively small.

3. Combine the grid counts and the kemel weights to obtain the approximation to
the kernel estimate. This essentially involves a series of discrete convolutions.

Step 1 requires the choice of both the number of grid points and the binning rule. The first
choice is quite crucial, because it represents a compromise between the computational
speed of the algorithm and the approximation error due to binning. There are also several
ways to bin the data (see Hall and Wand, 1993). We describe and compare the multivariate
extensions of the two most popular binning rules in Section 4.

The multivariate extension of Step 2 can be accomplished quite easily, as explained
in. Section 2.

An important question concerns the most effective way of executing Step 3. The
traditional way of computing a discrete convolution quickly is via the fast Fourier trans-
form (FFT). However, direct computation of convolutions is a contender in the kernel
estimation case because the arrays involved typically contain a high proportion of 0's.
Scott (1992) presented algorithms that take advantage of this sparseness. In Section 5
we present a comparison of these approaches through an empirical study. It is demon-
strated that, although there is little difference between the computational speeds of FFT
and direct computation of convolution in univariate settings (Fan and Marron 1994},
considerable gains can be realized by use of the FFT in multivariate settings.

Section 2 describes the essence of binned multivariate kernel estimation. Section 3
describes multivanate binning rules, and Section 4 is devoted to computation of multi-
variate convolutions. Section 5 contains the empirical study mentioned previously. Sec-
tion 6 describes fast kernel functional estimation, and Section 7 gives discussions an
implementation.

2. BINNED MULTIVARIATE KERNEL ESTIMATORS

Let (X, Y1) ..,(X.,Y,) be a sample of pairs, where X;, ..., X,, are R%-valued
predictor variables having d-variate density f, and Y;, ..., Y, are scalar response vari-
ables. The kernel density estimate of f(x) and local polynomial kemel estimators of
m{x) = E(Y[X = x) depend on quantities of the form

bie(x) = 3 (X ~ KEL (X, ~ x)

i=|

and

i) = Y (X - xR KP (X, - x)Y;
i=1 )
where k = (k;,..., k), and for a d-vector u = (uy,...,u4) the convention u* =

ul .. uk? is used.
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The notation K;Z applies to the rescaling of the product kemel K (x) = K(z}. ..
K{zg4) by the vector of bandwidths h = (hq, ..., hg):

KL () = Ky () ... Kn,(z4), (2.1)

where K is a symmetric probability density function and Kp{z} = K(z/h}/h is a
rescaling of K by the bandwidth A > 0. If K has compact support then we will let
[-7, 7] denate the interval outside which K is €. If K has infinite support then one
could replace K by K1;_, |, where T is chosen so that K is effectively 0 outside of
[—7, 7]. The choice of 7 should be such that the truncation to [—7, 7] has negligible effect
on the final estimation. For example, if K is the standard normal density, then + == 4 is
a safe choice.

Note that K|P does not include all multivariate kernels of interest, such as those
based on rotations of a univariate kernel (sometimes called spherically symmetric ker-
nels). However, for computational purposes great savings in the number of kemel evalu-
ations are possible if the product structure of (2.1) is available. Also not included is the
possibility of smoothing in orientations different to those of the coordinate axes. This
can be done by rescaling K¥ by a bandwidth matrix and was demonstrated by Wand
and Jones (1993} to be an important extension in certain circumstances. If smoothing in
different orientations is desired, then it is recommended that the data be prerotated so
that the product scaling (2.1) is adequate. The computations can be done on the rotated
data, and then the result rotated back to correspond to the coordinates of the original
data.

The simplest estimators of f{x) and m(x) are

fix) =n7'3g(x) and 1x;0) = fg(x)/3g(x).

The estimator 72(x; ) corresponds to a local least squares constant fit, and is usually
called the Nadaraya—Watson estimator. Higher-degree multivariate local polynomial esti-
mators can be quite complicated (Ruppert and Wand 1994). Even local linear estimators
require a (d+ 1) x {d+1) matrix inversion. For example, the local linear kernel estimator
for bivartate predictor variables is

d00(x) %0(x) Fou(x)] " [foa(x)
m(x; 1) = el | 810(x} w(x) §u(x) f10(x)
doc{x)  Bulx) 3ea(x) to1 (%)

Despite the increased cormplexity, significant gains can be realized by use of the local
linear estimator compared to the Nadaraya—Watson estimator. In particular, local linear
estimators are conditionally unbiased for linear m., adapt better to nonuniform designs,
and exhibit superior boundary perforrnance. For further discussion on the virtues of local
linear fitting see Fan (1992), Hastie and Loader (1993), and Ruppert and Wand (1994).

Fori=1,...,d,letg;1 < --- < g; ar, be an equally spaced grid in the ith coordinate
directions such that [g;), g;as,] contains the ith coordinate values of the X’s, Here A is
a positive integer representing the grid size in direction 4. Let

gj:(gljl:“wgdfd)? lSj;‘,SMi, 2':1110}-
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denote the grid point indexed by j = (4;,..., j4} and the ith binwidth be denoted by
8 = (9i,m, — gi1)/(M; — 1). Fast binned approximations of kernel estimators involve
binning the original data to obtain grid counts (¢, dj) that represent the amount of (X, V')
data near each grid point. Strategies for obtaining grid counts are described in Section
3. The binned approximation to 3x(g;) is

M, My
Agg) =D Y (8 — 8" Knlg; ~ g.)ce.
£=1 £a=\

It is easy to show that

Ly La
aEgd= Y Y sk (2.2)
£

r==£L f4=—Lyg

where

4
rne = [ [{Kn (&) (8835}, Li = min(|hi/8:], M, — 1),

i=1

and |z | denotes the greatest integer less than or equal to x. The expression for the binned
approximation to fk(gj}, denoted by fx(g;}, is the same as &(g;) except that the ¢, are
replaced by the d,. If the 3x{g;) and fx(g;} are substituted for 3x(g;} and #.(g;) in the
formulas for f(g ;) and th(g,: p) then their binned approximations f (g;) and h{g;; p)
result.

The binned approximations 3y and fi represent enormous computational savings,
because only }:f:l L; kemel evaluations are required to obtain the sy, regardless of
the value of n. Once the count and kemel vectors have been obtained, they need to be
combined using (2.2) to obtain the & and #. This is a discrete convolution problem and
its solution will be discussed in Section 4.

3. MULTIVARIATE BINNING RULES

The two most commeon univariate binning rules are simple binning and linear binning.
If a data point at y has surrounding grid points at x aod z, then simple binning involves
asstgning a unit mass to the grid point closest to . Linear binning assigns a mass of
(z~y)/(z— z) to the grid point at z, and (y—x)/(z —x) to the grid point at =z (see Jones
and Lotwick 1983). Multivariate binning rules may be defined by taking the product of
univariate rules. Figure 1 gives a graphical description of how a data point X distributes
its weight to neighboring grid points for the bivartate extension of simple and linear
binning. For simple binning, the point X gives all of its weight to its nearest grid point,
in this case the grid point at the lower left vertex of the rectangle formed by joining
the four grid points neighboring X. In the case of linear binping, the contribution from
X is distributed among each of the four surrounding grid points according to areas of
the opposite subrectangles induced by the position of the data point. Higher-dimenstonal
extensions of simple bipning and linear binning, where areas are replaced by volumes,
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(a) Simple binning

Weight from X=0 Weight from X=0

Weight from X=1 Woeight from X=0

{b) Linear binning

Wei?ht from X= Weight from X=
{area of D)/(total area) (area of C)/{total area)
A X B
c D
Weight from X= Weight from X=
{area of B)/{total area) {area of A)/(total area)

Figure 1. Graphical Represenation of (a} Simple Binning and (b) Linear Binning When d = 2.

are obvious. Let w,(X) be the weight that X assigns to g, by one of the described
binning rules. Then the (c,,d,) are given by

T n
ce=Y wi(Xs) and de=  we(X,)Yi.
i=1 i=I
For both simple and linear binning the (¢,,d,) can be computed using a fast O(n})
algorithm by extending the “integer division™ tdea of Fan and Marren (1994).
Two abvigus questions that arise are:
1. How do simple and linear binning compare?
2. How many bins should one use in each direction?
Question [ is partially answered by asymptotic results of Hall and Wand (1993). A
straightforward extension of their arguments leads to, for constants A; and B,

E{a(x)—&x)) = ¥ A8 +o (Zle 63) for simple binning
= YL Béi+o (Zle 6;‘) for linear binning,

as & — 0,1 = 1,...,d. Therefore, in terms of how well the 3 approximate the &,
linear binning is an order of magnitude better than simple binning. Analogous results
hold for E{fk(x) — fi(x)}2.

It is impossible to give an absolute answer to Question 2 because functions with
finer structure require more grid points to achieve a given level of accuracy. Insight into
the effects of binning on accuracy can only be realized through examples. Table 1 shows
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Table 1. Minimum Number of Bins in Each Direction to Achieve AMISE==1%

n =100 n = 1,000 n= 10000
d Simple Linear Simple Linear Simple Linear
2 az 15 46 22 67 32
3 a3 14 45 20 62 27
4 34 14 45 18 59 24

that minimum grid size M = M; in each direction is required to achieve an approximate
relative mean integrated squared error (RMISE) of 1% for estimation of the N{0,1;)
density over [—3, 3]%. Here RMISE is defined to be

" total estimation error’

E/ () — f(x)}ldx/E/ {f(x) _ f(x)}z dx — error due to binning
R R?

To produce Table | we replaced the numerator of RMISE by the leading term of the small
delta approximation derived in Section 5 of Hall and Wand (1993). The denominator was
replaced by the large sample approximation to the mean integrated squared error of a
multivariate density estimator (see Wand and Jones, 1993) and the bandwidth minimizing
this quantity, h; = h = [4/{(d+2)n}|'/¥T4), i =1,...,d, was used in both numerator
and denominator. See the Appendix for the derivation of results required for Table 1.

In this case the number of bins in each direction does not change very much between
dimensions. However, remember that the total number of grid points is equal to M?, so
there is a big cost for higher dimensionality. Another point to note is that the normal
density is a function with comparatively little structure, so the numbers in Table 1 rep-
resent an approximate lower bound on the number of grid points that one should use in
each direction to achieve a 1% approximate RMISE. Higher numbers are necessary for
more complex functions.

The results in Table 1 also provide a practical answer to Question 1, where it is seen
that linear binning requires about half as maoy bins in each direction to achieve a given
level of accuracy. The savings of linear binning can be enormous. For example, a 1%
approximate RMISE is achieved for estimation of the three-dimensional normal density
using linear binning with 27° = 19,683 grid points, while 62° = 238,328 grid points
are required to achieve the same accuracy using simple binning.

Figure 2 shows contour plots of kemel density estimates based on 640 longi-
tude/latitude. pairs of the epicenters of earthquakes in Mount Saint Helens region. These
data have been apalyzed by O'Sullivan and Pawitan (1993). The values of M, = A =
M are (a) 235, (b} 50, and {¢) 100. For M = 23 the contours have a granular appearance
and the binned estimator is slightly biased compared to the unbinned estimator. The
difference between the M = 50 and M = 100 density estimates is marginal, but the
M = 100 estimate is slightly smoother. For display purposes, about 50-70 grid points
in each direction would be adequate for this density estimate.
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{a) M=25 {b) M=50 (¢) M=100

]
Ta
§
= a @
$ 4 - 3
122,15 tz220 12015 122 1215 12220
longhuda Iangfiude Wangtuda

Figure 2. Binning Kernel Density Estimates of Mount Saint Helens Data for (a} M; = 25, (b} M; = 30, {c) M;
= j0.

4, COMPUTATION OF MULTIVARIATE CONVOLUTIONS

We now investigate the problem of efficient computation of multivariate discrete
convoluttons of the type given by (2.2). Scott (1992, p. 121) gives an efficient algo-
rithm for computation of such quantities in the bivariate context. An alternative ap-
proach is to use the fast Fourier transform (FFT). It has the advantage of requiring only
O(M, log M, ... Mglog M,) operations compared to the O{M? ... M3) operations re-
quired for direct computatien of (2.2), We will describe how the FFT can be used to
compute {2.2), starting with the case d = 1.

The discrete Fourier transform of a complex vector z = (2, ..., zy—1) is the vector
Z=1(Zy,....ZNn-1), where

N-1
Z; = Z 2o N i =0, N~ 1,
=0
and i is the square root of —1. The vector z can be recovered from its Fourier transform
Z by applying the inverse discrete Fourier transform formula
M-l
z2=N"1Y" zjemma/N g0, N-L
j=0
If N is a highly composite pumber, such as a power of 2, then discrete Fourier transforms
and their inverses can be computed in O(N log N} operations using the FFT algorithm
(Cooley and Tukey 1965). The discrete convolution of two vectors can be computed
quickly using the FFT by appealing to the Discrete Convolution Theorem: multiply the
Fourier transforms of the two vectors element-by-element and then invert the result
to obtain the convolution vector (see Press, Flannery, Teukolsky, and Vetterling 1938,
pp. 408—411}). However, this theorem requires certain periodicity assumptions, so when
these assumptions are violated appropriate zero-padding is required to avoid wrap-around
effects. We will now give a description of what this entails for the FFT computation of
the univariate convolution

L
§k(gj): Z Cj_gn‘i.k‘g, jzl,.,,,M[.
£=—1,
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Let P be a highly compaosite number such that P > Af; + L, and let 0,, denote a vector
of p zeroes. Define the “zero-padded” vectors

e? = (ci,... can,, 0p_py,)

and

Ef = (Kk,fh L N P LT 0 OP—ZLl—Ia (_l)kﬁk,Ln (_l)kﬁ'k,Ll—ll Ty (_1)knk,l):

which are each vectors of length P, The zero-padding on the right end of the ¢;'s is
to account for wrap-around effects and the k. vector lists the kg ¢'s in wrap-around
order with appropriate zero-padding in the interior. Let CZ and KF be the discrete
Fourier transforms of ¢Z and &7 respectively (computed using the FFT) and let S;, be
the element-wise product of C and K. Then the first M entries of the inverse FFT of
S are equal to 3(g;), j = 1,..., M.

The extension of this idea to general dimensions is relatively straightforward. To give
the flavor of what is involved, we will give a brief description of the FFT computation
of the bivariate convolution required for computation of the 5g0(g;, ;,). Fori = 1,2 let F;
be 2 highly composite integer exceeding M; + L;. Also, let ¢ = [cqq,) be the M, x M,
matrix of counts and let 0 denote a generic matrix of zeroes. To make the notation less
cumbersome we will write Kgg,¢,¢, as K¢, ¢,. Then appropriate zero-padded matrices are

[ ko Ko, KoL, -0 Kor ]
0 L7 1 B 5 A ) Kp,r, - Ko
z_1° and «&Z 0 0 0
¢t = = ,
0 0 0
Kigg --- HLiLs KL Y S |
L Rgg - R KL, 0 R

where the dimensions of the 0 matrices are chosen to ensure that both ¢Z and &% are
P x P, matrices. Notice the mirror imaging of the ¢, values in the construction of
2. One should apply the FFT to each of ¢Z and &% and take the element-wise product
of the results. The M, x M, submatrix in the upper left corner of the inverse FFT of
this product contains values of 5go{g;,5). J: = 1,..., My, 4+ = 1,2, as defined by (2.2)
in the case d = 2, k = {0,0).

5. SPEED COMPARISONS

Fan and Marron (1994) argued that, for typical grid sizes such as M; = 400, there
is not much difference between the times required for direct and FFT-bhased computation
of univariate convolutions. However, because the asymptotic dominance of the FFT is
greater in higher dimensions we might expect it to allow greater savings for more practical
grid sizes. To test this theory, speed comparisons were performed for computation of a
d-variate kernel density estimate for d = 2 and ¢ = 3. The computations were performed
over [—3, 3] based on samples of size n =100, 1,000, and 10,000 of standard d-varjate
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Table 2. Average Discrete Convolution Computation Times {standard deviations)

Bivariate density estimation

n= 100 n= 1000 = 10,000
A FFT  Direct Ralio FFT  Direct Ralic FFT  Direct Ralic
25 A0 A 1.00 1.00 1.00 1.00 1.00 1.00 1.00
(42)  (42) (00)  (00) (00} 00)
50 1.40 1.90 1.40 1.50 2.50 1.70 1.30 2.30 1.80
{.52) {.32) (.53} {.53) {.48) {67}
100 4.00 6.10 1.50 340 17.20 510 450 1940 5.50
(00) (32 (52) {1.14) (53} (97}
Trivariate density estimation
n=100 n= 1,000 n= 10,000
M FFT  Direct Ratio FFT  Direct Ratio FFT  Direct Ratio
25 850 18.60 2.20 8.60 26.00 a.no 8.30 3070 .70
(52) (1.26) (70) {1.25) (48)  (67)

normal observations. The kernel was the d-variate standard normal and the bandwidth
was h; = h = [4/{(d+2)n}]'/4TH which minimize asymptotic mean integrated square
errer for this setting. Grids for which A = A, = 25,50, and 100 were considered for
the bivariate case but, due to storage restrictions, only M = M, = 25 was used for the
trivariate case.

Far each setting and grid, 10 replications were, performed and the kemel evaluation

and convolution stages were timed, where the convolutions were computed using

I. The FFT-based algorithm described in the previous section. The FFTs were com-
puted using the S-PLUS f£t (} function, and zere padding to matrices having
dimensions equal to powers of 2 was used. For the bandwidths used in this study,
the next highest power of 2 was sufficient.

2. Direct computation of convolution using FORTRAN implementation of two- and
three-dimensional versions of the algorithm given in Scott (1992, p. 121). This
is a very efficient direct convolution algorithm because it takes advantage of the
fact that a high proportion of the grid counts and kemel weights are 0.

In all cases linear binning was used to obtain the grid counts. The computations were
performed on the author’'s RS6000/220 Powerstation and times were recorded according
to the elapsed time component of the unix. time function of S-PLUS (see Statistical
Sciences, Inc. 1991}. For each setting the average times and their ratios are shown in
Table 2. The raties are a better way of comparing the two computational methods, because
they are less dependent on changes in computing environments. Nevertheless, the average
times themselves give a real life aspect to the problem in that they indicate how long a
user would have to wait for a picture of the estimate to appear on the screen in 1994
using a typical computing environment,

In each case the FET exhibits equal or faster computation of convolutions than the
direct approach, and can be as much as five times faster for the settings considered here.
There is not much difference between the two methods for small grid sizes, but the FFT
offers substantial improvements for finer grids. Use of the FFT comes at the cost of
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careful zero-padding being required, but if speed is of major concemn then it seems clear
that FFT computation of convolutions is superior to direct computation for multivariate
kermnel estimation.

6. FUNCTIONAL ESTIMATION

The estimation of certain functionals of density and regression functions has been
a topic of considerable research effort in recent years. For example, the problem of
estimating the functional { f(x)? dx, for a density f, is of importance to nonparametric
rank statistics (see Sheather, Hettmansperger, and Donald in press). In the nonparametric
multivariate density estimation context, data-driven rules for bandwidth selection rely on
estimation of functienals of the form

Ym = / £ () () dx, 6.1)

where

gt - tmy

F™(x) = Wﬂ ).

This includes multivariate versions of least squares cross-validation (Stone 1984), biased
cross-validation (Sain, Baggerly, and Scott in press) and plug-in bandwidth selection
{(Wand and Jones 1994). Similar bandwidth selection rules can be developed for multi-
variate kernel regression, but because this has not yet been done we will focus on the
problem of estimating (6.1). The natural kernel estimate of Yyp is

Pm(h) = iif{(“‘ X, - X;). (6.2)

The first thing to note about (6.2) is that it involves a double summation over n. Therefore
O(n?) operations are required for its direct computation, which can be prohibitively high
for even moderate values of n. However, this can be overcome by using an approximation
based on the bin counts ¢, to obtain

A, £y La
e Ealf £ 007)
=l ja=1 f=—F; by=—1Lg

where

(m} H{K(ma}(g )%,

The summation inside the brackets is a multivariate convolution, so it can be hapdled
in the same way as for 3x(g;), described in the previous section. The resulting array
only needs to be multiplied by the corresponding grid counts and summed to obtain the
estimate.
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7. COMPUTING PRACTICALITIES

The actual programming and execution of binned multivariate kemel estimates leads
to several new questions concerning the utility of the programming language at hand.
Mast of the programming for the examples and comparisons in this article were done
using 5-SPLUS, which has the desirable features of multidimensional arrays and a built-
in FFT routine called ££t. The main exception is the direct convolution routine, which
was programmed in FORTRAN because looping in this language is considerably faster.

Storage space is another practical concern, because multidimensional arrays can he
quite large. If using the FFT to compute convolutions, then careful choice of the initial
grid-sizes is recommended to ensure that zero-padding is not excessive. This is mainly
due to the restriction of the zero-padded arrays requiring highly composite dimensions.
For example, if powers of 2 are used for the zero-padded arrays, then having an initial
grid size of 60 x 60 is unwise hecause 60 is very close to its next highest power of
2 and there is 2 good chance that 128 x 128 zero-padded arrays will be required, after
accounting for wrap-around effects. In general, one should ensure that each M, is chosen
such that M; + |7h;/8;| does not exceed the next power of 2 above Af;.

S-PLUS/FORTRAN code for bivariate and trivariate kernel estimation is available
by request from the author (e-mail: wand @agsm.unsw.edu.au).

APPENDIX: DERIVATION OF RESULTS
REQUIRED FOR TABLE 1

Suppose that both f and K are both equal to the N{0,1;) density. Then, because
f and K are spherically symmetric, we cantake §; = dand h; = h,i=1,...,d. Let ¢
be the univariate standard nermal probability density function and unqualified integrals
be taken over the whole space. Results given in Section 5 of Hall and Wand (1993) lead
to (as § — Q)

B [0~ ooy axs poa [ (f#) e

for simple binning, and

B [to-foapamast { ot v ot o e ([4)

for linear binning. Standard large sample results from density estimation (see Wand and
Jones 1993} show that, as & — 0, nh — oo and n — o0,

inf B [ (Fx) — FO0} dx = (4m)2{(d+ 4)/4}(d-+ )/ (4m) 00

with the asymptotically optimal % equal to [4/{(d + 2}n}]'/4+4) These results can be
now substituted into the RMISE formula. Direct algebra then shows that the minimum
value of M required to achieve an approximate 100a% RMISE for estimation of the
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normal density over [—3,3]¢ is

dn?/(d+4)46/(d+4) (g | 2)(d-D)/(d+4] }lﬂ

M=|1+6
* { W(d+ 4y

(where [] is the smallest integer greater than or equal to z) for simple binning, and

1/4
Onid+2
d(4ﬂ)4’((d+4} (3(d +2)+ i,‘if(dfﬂ},i_{nl(dn,:}_(z;iz;}'(d.-}—&)](d-}—&”z)

M=1{1+6
i 480(d + A)(d 1 2} @+

for linear binning. The values of A in Table | are obtained from these formulas by
setting & = .01, n = 100, 1,000, and 10,000 and d = 2,3, and 4.

[Received March 1993. Revised April 1994.]
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