Aust. N. Z. J. Stat. 51(1), 2009, 9-41 doi: 10.1111/j.1467-842X.2009.00538.x

SEMIPARAMETRIC REGRESSION AND GRAPHICAL MODELS

M. P. WAND!
University of Wollongong

Summary

Semiparametric regression models that use spline basis functions with penalization have
graphical model representations. This link is more powerful than previously established
mixed model representations of semiparametric regression, as a larger class of models can be
accommodated. Complications such as missingness and measurement error are more natu-
rally handled within the graphical model architecture. Directed acyclic graphs, also known as
Bayesian networks, play a prominent role. Graphical model-based Bayesian ‘inference en-
gines’, such as BUGS and VIBES, facilitate fitting and inference. Underlying these are Markov
chain Monte Carlo schemes and recent developments in variational approximation theory
and methodology.
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Monte Carlo; measurement error models; missing data; mixed models; penalized splines; varia-
tional approximation; variational inference; VIBES.

1. Introduction

The main thrust of two of my publications from five years ago, Ruppert, Wand & Carroll
(2003) and Wand (2003), was that mixed models are a very useful framework for carrying
out semiparametric regression analyses. The thrust of this paper is that the more general
graphical models framework is also very useful for semiparametric regression, especially
when the problem is non-standard.

Semiparametric regression is an embellishment of parametric regression that uses pe-
nalized spline basis functions to achieve greater flexibility. Ruppert et al. (2003) surveyed
the field up to about 2002. The mixed model aspects of semiparametric regression, and an-
tecedents such as smoothing splines, have been known for some time (e.g. Wahba 1978).
However, the advent of formal mixed model software in the 1990s led to a surge in research
on mixed model approaches to semiparametric regression, mainly in the last decade. A recent
survey of semiparametric regression for the period 2003—2007, to be published as Ruppert,
Wand & Carroll (2009), revealed more than 150 research articles making use of the mixed
model-based semiparametric regression. Sophisticated semiparametric regression analyses
are now being routinely carried out, with the ‘work’ being done by established mixed model
software such as Ime() (Pinheiro et al. 2008) and PROC MIXED (SAS Institute, Inc. 2008),
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10 M. P. WAND

or with BUGS (Lunn et al. 2000) if a Bayesian approach is adopted. Recent examples are
Harezlak et al. (2005) and Crainiceanu, Diggle & Rowlingson (2008).

In many applied situations, however, complications such as non-Gaussian response and
missingness prevent the use of standard mixed model methodology and software. I will argue
that graphical models are a better vehicle for fitting and inference in this case. Software for
graphical models is less mature but, in 2008, some reasonable options exist. In this article I
make use of BUGS (Lunn et al. 2000) and VIBES (Bishop, Spiegelhalter & Winn 2003), each of
which are Bayesian inference engines built upon graphical model architecture. Methodology
and software of this type is an ongoing active area of research.

Research into graphical models is currently a very vibrant area, although much of it is
taking place in Computer Science rather than in Statistics. The recent book Pattern Recognition
and Machine Learning, by C.M. Bishop (20006), stated that ‘graphical models have emerged
as a general framework for describing and applying probabilistic models’ in the areas of
machine learning and pattern recognition.

The central thesis of the present article is that (non-standard) semiparametric regression
can be embedded in graphical model architecture and benefit from ongoing graphical model
research. There is also the potential for new applications for semiparametric regression in
areas of research that are intrinsically graphical model-based. Some examples are causal
inference, social networks and phylogenetic trees.

The proposed marriage of semiparametric regression and graphical models is in keeping
with a current general trend that is seeing ideas being exchanged between Statistics and
Computer Science much more freely than in earlier days of each discipline. The foreword of
arecent special issue of Statistical Science on Bayesian Statistics described ‘the dissolving of
the frontier between Statistics and Computer Science’ (Casella & Robert 2004). The special
issue contained two review articles, Jordan (2004) and Titterington (2004), of recent Computer
Science literature involving Bayesian Statistics. Each of these has had a strong influence on the
present article. In 2006, Statistica Sinica had a special issue entitled Challenges in Statistical
Machine Learning.

Semiparametric regression has already benefited from other areas of Computer Science.
One spectacular example is boosting (Schapire 1990; Freund 1995; Freund & Schapire
1996). Tutz & Binder (2006) described the evolution from boosting as a means to improve
classification procedures to a powerful tool for semiparametric regression analysis and provide
relevant references. Also see Biihlmann & Hothorn (2007) and accompanying discussion.
Kernel machine research (e.g. Scholkopf & Smola 2002) is another area in which there is a
great deal of common ground; see the recent Statistics articles by Pearce & Wand (2006),
Wahba (2006) and Hastie & Zhu (2006). To date, there seems to be have been very little
interplay between graphical models and semiparametric regression. A rare example of such
interplay is Liang, Truong & Wong (2001), who used graphical models in their Bayesian
nonparametric regression procedure.

Section 2 summarizes semiparametric regression, focussing on mixed model and hierar-
chical Bayesian representations. In Section 3 a brief summary of graphical models is provided.
A graphical models viewpoint of semiparametric regression is put forward in Section 4. Sec-
tion 5 then pays special attention to non-standard variants of semiparametric regression.
Sections 4 and 5 both work with Bayesian inference engines based on Markov chain Monte
Carlo (MCMC) and BUGS software. Section 6 describes an alternative type of inference en-
gine, based on variational approximation. A case study involving relative cancer mapping,
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SMOOTHING AND GRAPHICAL MODELS 11

when some auxiliary data are missing, is described in Section 7. In Section 8 I add some
brief discussion on what might potentially be new areas of application for semiparametric
regression, in light of this article’s central thesis. Concluding remarks are given in Section 9.

1.1. Notation and conventions

Column vectors with entries consisting of subscripted variables are denoted by a bold-
faced version of the letter for that variable. For example, the vector containing xi,...,x, is
denoted by x. Scalar functions applied to vectors are evaluated element-wise. For example,
tanh(ai, a,, asz) = (tanh(a,), tanh(a,), tanh(as)).

The density function of a random vector x is denoted by [x]. The conditional density of
y given x is denoted by [y | x]. A random variable x has an inverse gamma distribution with
parameters A, B > 0, denoted by x ~ IG (A, B), if its density function is [x] = BAT'(A)~!
x A1 ¢7B/* x > 0. For a general random vector v, v ~ (i, X) is shorthand for E(v) = u
and cov(v) = X, the covariance matrix of v. If, for 1 <i < n, y; has distribution D; and the

y; are independent, then I write y; IE'D,-.

There are several directed graphs in this article. I use the same conventions as Bishop
(2006). Random nodes are denoted by open circles. Non-random nodes are shown as small
solid circles. Observed (‘evidence’) nodes are distinguished from parameter (‘hidden’) nodes
using shading.

All Bayesian models are fitted using standardized versions of continuous variables.
Unless otherwise stated, MCMC examples use a burn-in period of 5000 iterations and then
retain 5000 iterations. They are then thinned by a factor of 5, resulting in samples of size
1000 being retained for inference.

2. Semiparametric regression

Three examples of semiparametric regression models are

vi S Bernoulli [logit ™ {B1x1; + fr(xa) + faulrai, xa)}l, 1 <i <n, (1)
ind. . .
yi ~Poisson [exp{o(x1i) + fi(x1)xx}], 1<i<n, )

ind.
ij | tisoi ~ N (i i + fi(x1) + By Xoi, 02),

ind. . .
i~ N(0,04), 1 <j<n, 1<i<m. (©)

Model (1) is an extension of the generalized additive model paradigm that allows non-
parametric bivariate components. If (x3;, x4;) corresponds to geographic position, then (1)
is sometimes called a geoadditive model (e.g. Kammann & Wand 2003). In Model (2), By
and B, are smooth functions of the x; variable. This model is known as a Poisson varying
coefficient model. Model (3) is usually called an additive mixed model, as it represents the
fusion of an additive model and a linear mixed model.

An example data set that might benefit from (3) is shown in Figure 1. The source and
description of the data are given in Section 4. A question of interest is how the response
variable, spinal bone mineral density, differs among the four ethnicity groups. However, the
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Figure 1. Data on spinal bone mineral density versus age, data broken down according to ethnicity of
the subjects. Points for the same subject are connected by lines.

analysis is complicated by (a) the non-linear effect of age, and (b) correlation arising from
repeated measurements on the same subject.

In the mixed model approach to semiparametric regression, nonparametric functional
relationships are handled through modelling mechanisms such as:

K
FE)=Bo+Bix+ Y ukspze(®), g iid N(0,02). )
k=1
Herez,,...,zk are aset of spline basis functions. The simplest example is zzx(x) = (x —
k )+ for some knot sequence k1, ...,k g. Here u, equals u for u > 0 and equals O otherwise.

However, more sophisticated options now exist: see, for example, Wood (2003), Welham
et al. (2007) and Wand & Ormerod (2008). Most of the spline bases described in these
three references are in accordance with the classical nonparametric regression method known
as smoothing splines (e.g. Wahba 1990; Eubank 1999). This approach is extendable to
multivariate functions using either radial basis functions (e.g. Wood 2003; Ruppert et al.
2003) or tensor products (e.g. Wood 2006).

The upshot of (4) is that most semiparametric regression models are expressible as

E(y |u) = ¢(XB + Zu), u~(0,G). &)
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SMOOTHING AND GRAPHICAL MODELS 13

Here gis a scalar ‘link’ function. The fixed effects term, X8, handles covariates that enter
the model linearly, whereas the random effects component Zu, with corresponding covariance
matrix G, handles non-linear effects, random subject effects and other spatial correlation
structure. There will often be other parameters arising, for example, in the variance structure
(e.g. R =cov (y|u)), but I will ignore this in the current discussion.

The hierarchical Bayesian version of (5) takes the form

[ylB,ul= fiy;XB +Zu); [u]|G]= fr(u;G)
[B] = f3(B;Ap); [G] = fu(G;Ag), (6)

where Ag and Ag are hyperparameters, f1,..., f4 are fixed conditional density functions
and [v|w] denotes the conditional density of v given w. Inference is based on posterior
densities for parameters of interest, in particular

[Blyl, [u]y] and [G]y].

In semiparametric regression it is very rare that analytical solutions for these posterior
densities exist, and approximation methods need to be employed. MCMC approximation
through the BUGS software (e.g. Lunn et al. 2000) often provides satisfactory solutions.

Semiparametric regression, especially by means of mixed models and hierarchical
Bayesian approaches, is now a major branch of Statistics. In Ruppert et al. (2009) we reviewed
literature on the topic for the period 2003—2007 and found about 300 papers with connections
to semiparametric regression. About 100 of these were in non-Statistics journals. Applications
include quantitative trait prediction (Gianola, Fernando & Stella, 2006), modelling of on-line
auctions (Jank & Shmueli 2007) and disease mapping (Crainiceanu et al. 2008).

Graphical models, described in the next section, can be used for both frequentist and
Bayesian statistical models. For the remainder of this article I will restrict attention to Bayesian
semiparametric regression. This is in keeping with the graphical model software used in the
examples.

3. Graphical models

The field of graphical models is a relatively young branch of mathematics that combines
ideas from graph theory and probability. Sometimes known as probabilistic graphical models,
they facilitate the visualization of probability models. Graph-theoretic results have been
established for determining conditional independence relationships and for devising efficient
algorithms for inference. The fundamental components of a graph are nodes and edges, which
link pairs of nodes. Directed graphs add an arrow-head to each link, conveying a parent—child
relationship. Several examples of graphs are given later in this section.

Even though there are instances of graphical models in probabilistic and statistical
contexts going back several decades (e.g. Wright 1934; Besag 1974; Geman & Geman 1984),
the 1980s saw the emergence of substantive theoretical advances and their use in applications.
Much of this occurred outside mainstream Statistics, and was driven mainly by applications
in Machine Learning and Pattern Recognition. Pearl (1988) is a watershed book on modern
graphical models. It was soon followed by a number of others: Whittaker (1990), Jensen
(1996), Lauritzen (1996), Castillo, Gutiérrez & Hadi (1997), Jordan (1999) and Cowell et al.
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14 M. P. WAND

X1 Xo
X3 Xy
X5
Figure 2. A directed acyclic graph involving five random variables: x1 , ..., xs.

(1999). The preparation of this paper has been aided by summaries of the field contained
in Jordan (2004), Wasserman (2004, Chapter 17) and Bishop (2006, Chapter 8), and each is
highly recommended as background reading for the current article. I also adopt the conventions
of Bishop (2006) for displaying graphs.

There are two main types of graphical models: directed acyclic graphs (DAGs), also
known as Bayesian networks, and undirected graphs, also known as Markov random fields.
Of these, DAGs are more immediately relevant to semiparametric regression, and attention
will be restricted to this subclass of graphical models.

An elementary example of a DAG is given in Figure 2. The x;,...,xs are random
variables corresponding to each of the nodes. The joint density of the x;s defined by this
graph takes the form

5
[x1, X2, X3, X4, X5] = l_[[xk | parents of x;] = [x1][x2][x3 | x1, x21[x4 | x2][x5 | X3, X4].

i=1
More generally, a DAG with N nodes corresponding to the random vectors X , ..., Xy
has its joint distribution given by

N

[x,...,xy] = H[Xk | parents of x].
k=1

Of particular relevance to this article is the DAG representation of hierarchical Bayesian
models. Consider a Bayesian version of simple linear regression:

Vi | Bor Biy 02NN (Bo + Pixi o), 1<i<n,
Bo~ N(upy05). B~ N(up,03), o> ~IG(A, B). (7

Then Figure 3 shows (7) represented as a DAG. Constant nodes, corresponding to the
hyperparameters and x;s, are shown as small solid circles. The shading of the y; nodes
indicates replacement by observed values. Bayesian inference involves conditioning on these
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Figure 3. Directed acyclic graph representation of a hierarchical Bayesian simple linear regression
model. Shaded nodes correspond to observed data.

nodes to obtain posterior densities. For example, the posterior density of the slope parameter
Bris[Bilyi,...,ynl

More compact versions of Figure 3 are shown in Figure 4. In Figure 4(a) we introduce
a plate, shown here as a rectangle, for the x; and y; nodes. The plate convention is that
all subscripted nodes inside the plate represent several nodes corresponding to the subscript
ranging from 1 to the number in the bottom right-hand corner of the plate. Panel (b) of
Figure 4 suppresses the constant nodes, and conveys only the essential probabilistic structure
of the model. In Figure 4(c) we replace the y; nodes by a single node for the random vector
y=(1,...,yn) and the By and B, nodes by one for § = (By, 81). This graph hides the fact

(a) (b) (c)

Mp, of Mg of A B
B, Po B o B o
88 B 8 6 B

Yi

Yi y

Xi n n

Figure 4. Compact graphical representations of a hierarchical Bayesian logistic regression model. Panel
(a) uses the plate convention for the subscripted nodes. In panel (b) the constant nodes are suppressed.
Panel (c) treats the vectorsy = (y,...,y,) and B = (Bo, B1) as entities.
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16 M. P. WAND

that the y; are conditionally independent given the parameters, but provides a particularly
succinct summary of (7).

The nodes corresponding to the parameters of a hierarchical Bayesian model are often
referred to as hidden in the literature on graphical models. The observed data correspond to
evidence nodes. In Figure 4(c) the evidence node is

&=y},
and the set of hidden nodes is

H={B,0%}.

Bayesian inference relies upon
(M. €] _ Iy, 8,071 _ y|8.01Bllo”]
€] [ [ wistsietap ao?
0 2

(H1E] =

’

the posterior density of the parameters given the data.

For general hierarchical Bayesian models, the probability calculus required to make
inference about parameters of interest can be aided by DAG representation and graph-theoretic
results. An example of such a result is that, conditional on its parents, each node is independent
of the rest of the graph except for its descendants.

Another example of graph theory involves the notion of Markov blankets (Pearl 1988).
The Markov blanket of a node is defined to be the set of its parents, co-parents and children.
The Markov blanket of a node separates it from the rest of the graph, in that conditioning on it
renders that node independent from the rest of the graph. An illustration of the use of Markov
blankets is provided in Section 4. There is also the theory of d-separation (Geiger, Verma &
Pearl 1990), which provides necessary and sufficient conditions for two sets of nodes in a
DAG to be independent after conditioning on a third set of nodes.

DAG representation of hierarchical Bayesian models has had a profound influence
on Bayesian inference since the early 1990s. As pointed out in Jordan (2004), systematic
application of graph-theoretic algorithms to Bayesian inference problems has led to so-called
Bayesian ‘inference engines’ (Cowell et al. 1999), and is exploited by the popular BUGS
software.

Numerous packages in the R language are concerned with graphical models and are
summarized on the web-site CRAN Task View: gRaphical Models in R. At the time of
writing, this web-site has the address cran.r-project.org/web/views/gR html.

4. Graphical models viewpoint of semiparametric regression

As discussed in Section 2, many semiparametric regression analyses can be couched in
the framework of hierarchical Bayesian models. These, in turn, have natural representations
as DAGs. As an illustration, consider the Bayesian additive mixed model for the data shown
in Figure 1. It consists of longitudinal measurements on the spinal bone mineral density
(SBMD) of a cohort of young female subjects (source: Bachrach et al. 1999). The number
of subjects is m = 230. Let n;, 1 < i < m, denote the number of measurements for the ith
subject. One question of interest concerns differences in mean SBMD among the four ethnic
groups, Asian, Black, Hispanic and White, after accounting for age. An appropriate model is
the Bayesian additive mixed model:
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SMOOTHING AND GRAPHICAL MODELS 17

ind.
.Vij | ﬂ? quj? uspls o’qzbj’ Oszl)]v nglnN N(ﬁ;rxl + ui,Sbj + f(agelj; ﬁ()v /319 ngl)])’ 052)7
o). Bo, B ~ N(0,051)
ﬂx ~ N(O, O'él)» O'Szbj ~ IG(Asbj, Bsbj), 0—52p1 ~ IG(Asplv Bspl): 082 ~ 1G(A¢, B). 3

Ugh; |052bj ~ N(O, aszbjl), Ugp| | aszpl ~ N(O, o

Here y;; denotes the jth (1 < j <n;) SBMD measurement on subjecti(l <i < m), age;;
is the age in years at which y;; was recorded, x; = (1, black;, hispanic;, white;), where
black;, hispanic; and white; are indicator variables for ethnicity (Asian ethnicity is taken
as the baseline). In addition, the u; g, are independent and identically distributed (i.i.d.) N (0,
afbj) random subject intercepts, and the ¢;; are i.i.d. N(0, ag), independent of the u; g;s, and
account for within-subject variability. We will model the smooth function for the age effect
using penalized splines:

K

f(age: Bo, Bi, oszpl) = Bo + Biage + Z urzr(age), ug spiii.d. N (0, crszpl),
k=1

where the z; are the spline basis functions described in Wand & Ormerod (2008). A graphical
representation of (8) is displayed in Figure 5. In panel (a) the predictors and hyperparameters
are included as constant nodes. These are suppressed in Figure 5(b).

In graphical model phraseology, £ = {y} is the evidence node, and

2 2 2
H = {8, usj, Usp1, 035, 0y, 07} )

(a) (b)

A:  B: Asbj Bsvj Aspi Bspl

y y

Figure 5. Directed acyclic graph representation of the hierarchical Bayesian model for the spinal bone

mineral density data (source: Bachrach et al. 1999). In panel (a) hyperparameters and the vector of age

values (taken to be deterministic) are shown as small solid circles. In panel (b) these non-random nodes
are suppressed.
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18 M. P. WAND

is the set of the hidden nodes. We wish to learn
[H|E] = [B. sy Ugpr, 0, 00y, 07 | . (10)

The probability calculus required to obtain (10) is somewhat difficult because one gets
stuck with intractable integrals that arise from integrating out the variance components.
Useful inferential statements, such as credible intervals for the components of g, are therefore
burdensome via direct calculation. Gibbs sampling (e.g. Robert & Casella 2004), a special
case of MCMC, circumvents this problem by providing samples of arbitrary size from (10).
There are several Gibbs sampling options as a result of the various ways in which H can be
partitioned. For the partition corresponding to the nodes of Figure 5, and ordering as in (9),
the Gibbs sampling strategy is:

Initialize: 81, Uy, (o1, Ugp) 01 (o gbj)m], (ogpl)m], (og)[m.

Cycle:g=1,...,B+ G:

B~ [ 1 gl (03 (03) 7 02) )
) [ |31, w40 03,) " (03) . (02) "]
g ~ [ugp®1] B8, uge), (Uszbj)[g—‘{ (Uszpl)[g—l], (af)[g_”, v].
(o) ~ L) 1B el w ), (o), (07) 7"
(230" ~ L5 1B ), ug ),

(02)" ~ [(@2) [ B9, wa's) wl®), (03,)", (03,)". v]. (1D

.y],

For a sufficiently high value of the burn-in sample size B, the draws

B ug!¢), ugy ), (Uszlgj)[g]7 (Uszl)l)[g]’ (5»32)[g]» B+1<g<B+G,

are a sample of size G from (10) and can be used for inference. Implementation of this Gibbs
sampling scheme requires the full conditional densities

[Blrest], [ug;|rest], [ugpy |rest], [ajjj |rest], [033] |rest] and [‘752 |rest], (12)

where ‘rest’ denotes the nodes in the graph apart from the node appearing before the vertical
bar. Determination of (12) benefits from the Markov blanket result stated in Section 3:

[node | rest] = [node | Markov blanket of node].

The Markov blanket of o3, is shown in Figure 6.

For this node we then have
[oszbj | rest] = [oszbj | Markov blanket of crij] = [O'Szbj | ug;] o [ug; |ojjj][afbj]
o< ()" exp {—[lusi |/ (203) Y (o)™ exp (= Bui/o3y)
= ) e | (B + ) 3]

~ 1G (Asbj + %mv Bsbj + %”usbj”2> .
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y

Figure 6. Markov blanket of the node afbj for the directed acyclic graph in Figure 5.

Continuing in this fashion we obtain the set of full conditionals as:

Blrest~ N({X"X + (62 /02) I} XT(y — Zgpjuge — Zopugp),

o (XX + (o2/0}) 1)),

gy [ rest ~ N ({Zuy " Zaoy + (02/03) 1) ' Zy T (v — XB — Zopnuy),
oLy Loy + (02 /03) 1)),

ugi | rest ~ N({Zg Zagi + (02 /02) 1)~ Zi T (y — XB — Zapjuyy),
02| Zp Loy + (02 /02) 1)),

03, | rest ~ IG (Asbj + m, B+ %”usbj”2> :

o2, |rest ~ IG (Aspl + %K By + %”usplnz) and

spl

0—32 |rest ~1G (As + % ;ni’ B + %”y - X,B - Zsbjusbj - Zspluspl||2> . (13)

Approximate Bayesian inference can then proceed via implementation of (11) and (13).
Implementation in the R language (R Development Core Team 2008) is very straightforward.
However, BUGS offers even more immediate results. Note that, in the Windows version of
BUGS, known as WinBUGS, there is the option to specify the model using a graphical model
drawing facility. Figure 7 is a screen-shot of the graph used for fitting (8) in BUGS.

Figure 8 summarizes the MCMC output and subsequent Bayesian inference for the
parameters in (8). In keeping with previously published analyses, a statistically significant
difference is found between Black and Asian females in terms of mean spinal bone mineral
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Figure 7. Screen-shot of the directed acyclic graph drawn in WinBUGS for specifying the semipara-
metric regression model applied to the spinal bone mineral density data.

density. Note that, in Figure 8, o, is replaced by the (effective) degrees of freedom for the
non-linear age effect (e.g. Buja, Hastie & Tibshirani 1989).

The fitted curves f(age), together with 95% pointwise credible sets, are shown in
Figure 9.

5. Non-standard semiparametric regression

The biggest gains from a graphical models viewpoint of semiparametric regression are
realized when the setting is a non-standard one. In ‘standard’ semiparametric regression, the
response variable is approximately Gaussian and all data are cleanly observed. However, in
many applications, the data do not conform with this ideal state of affairs, and the analyst has
to deal with the likes of categorical response variables, outliers, missingness and measurement
error. In this section I focus on three aspects of non-standard semiparametric regression: non-
Gaussian response, predictors subject to missingness, and predictors subject to measurement
error, and view them through the graphical model prism.

5.1. Non-Gaussian response

As is well known, the generalization of regression models to non-Gaussian response vari-
ables has its challenges. In semiparametric regression it essentially entails the extension from
linear mixed models to generalized linear mixed models. If taking a frequentist likelihood-
based approach, then an immediate consequence is intractable integrals. If a Bayesian/MCMC
approach is taken, then the full conditionals are no longer standard distributions like those
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Figure 8. Summary of MCMC-based inference for parameters in the fitted model for the spinal bone

mineral density data. The columns are: parameter, trace plot of MCMC sample, plot of sample against

1-lagged sample, sample autocorrelation function, kernel estimates of posterior density and basic nu-
merical summary.

appearing in (13). More elaborate MCMC schemes, such as Metropolis—Hastings and adap-
tive rejection sampling (e.g. Robert & Casella 2004), are required. Metropolis—Hastings
algorithms can also benefit from the viewpoint of graphical models and Markov blanket the-
ory. As pointed out by Jordan (2004), ‘factors that do not appear in the Markov blanket of a
set of variables being considered in a proposed update can be neglected.’

Zhao et al. (2006) recently studied semiparametric regression for the case in which the
response variable distribution is in the one-parameter exponential family. Implementation in
BUGS was described, which then means that such semiparametric regression models have
a DAG representation. For example, the logistic additive mixed model fitted to data on
respiratory infection in Indonesian children in section 4.1 of Zhao et al. (2006) has the
graphical representation shown in Figure 10. This DAG is very similar to the one in Figure 5
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Figure 9. MCMC-based estimate of the non-linear age effect in the spinal bone mineral density example.
The dashed lines correspond to pointwise 95% credible sets.

for the spinal bone mineral density example. The main difference is that y is now a binary
rather than a Gaussian node.

However, many other non-Gaussian response models of interest fall outside the one-
parameter exponential family structure. Examples from the semiparametric regression lit-
erature include negative binomial (e.g. Thurston, Wand & Weincke 2000), Efron’s double
exponential family (e.g. Nott 2006), beta (e.g. Branscum, Johnson & Thurmond 2007), Stu-
dent’s t (e.g. Staudenmayer, Lake & Wand 2009), and generalized extreme value (e.g. Yee
& Stephenson 2007; Padoan & Wand 2008) distributions. All can be embedded within a
graphical models framework. Current joint research with Jennifer K. Marley is investigating
BUGS fitting of non-Gaussian response semiparametric regression models such as these.

As the response becomes less standard, the suitability of established mixed model
software is less likely, and more general software packages such as BUGS are about the only
current option. Essentially, this means that ordinary mixed model architectures are inadequate
and that more general graphical model architectures are required. The next two subsections
provide even more potent illustrations of this state of affairs.

5.2. Predictors subject to missingness

Consider the simple nonparametric regression setting
yi=f(x)+e, &iidN(0,02), 1<i<n, (14)
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y

Figure 10. Directed acyclic graph representation of the Bayesian logistic additive mixed model applied
to data on respiratory infection in Indonesian children in Zhao et al. (2006).

for a smooth function f, and assume that the x;s can be modelled as coming from a normal
distribution with mean ., and variance ai. Suppose, however, that all of the y;s are observed
but that some of the x;s are missing. An appropriate hierarchical Bayesian model for this
situation is

K
ind.
yilxi, B, u, 02~ N (ﬁo + Bix; + E uiZi (X)), 03) , u | o}~ N(O, 6,421),
k=1

ind.
Xl s, 07 ~ N(pe,07), B~ N(0,051),  pe~N(0,07),
o2 ~1G(A,, B,), o} ~1G(A., B;), o} ~I1G(A,, By). (15)

Let x°* be the vector of observed x;s and x™* be the missing values. Then the observed
data, or evidence nodes, are

obs

E ={y, x>},

and the parameters, or hidden nodes, are

H={B.u.x" 0,07 pu, o}

The DAG for (15) is given in Figure 11.
Bayesian inference requires

[H|E= [ﬂ, u, x™, ou2, (752, T ze |y, x"bs].
Note the extra layer of complexity imposed by missingness, because
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Figure 11. Graphical representation of the penalized spline nonparametric regression model with the
predictor subject to missingness. Shading corresponds to the observed, or evidence, nodes.

[ﬂ, u, auz, 082, Uy, GXZ | y, XObS]

f [y 1%, B, 02][x | ier. o7 |1BY[w] 07 ][0 ][0 ] (a1 [07]d x™™
/ [y1x. 8. 02][x| . o2)1B1[u | 07][07 ][02](ms)[07] d H

now involves integration over the missing data vector x™,
I tested BUGS fitting of (15) to simulated data with

1 1
ol=—, 02=035 (16)

= 300, = sin(4mx), x = = )
n f(x) =sin(4rx), u 7 kY

and 20% of the x;s missing completely at random. The hyperparameters were set to be

1

2 2 _ 8 _ _ _ _ _ _
0f=0l =10° A =B.=Ac=B=A=Bi= .

a7

Because the spline basis functions for the missing x;s have to be computed inside BUGS,
I used truncated lines:

zk(x) = (x — ki) withk = {(K 4+ 1 — k) min (x*) + kmax (x?*)} /(K +1), 1 <k <K

and K = 25. The relevant BUGS code is

model

{

for(i in 1:n0bs)
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{

muObs[i] <« betald + betal#x0Obs[i] + inprod(u([],Zx0bs[i,])
yx0Obs[i] ~ dnorm(muObs[i],tauEps)
x0bs[i] ~ dnorm(muX,tauX)

}

for(i in 1:nMis)

{

muMis[i] <« beta0 + betal*xMis[i] + inprod(ul],ZxMis[i,])
yxMis[i] ~ dnorm(muMis[i],tauEps)

xMis[i] ~ dnorm(muX,tauX)

}

for (k in 1:K)

{

for (i in 1:nMis)

{

ZxMis[i,k] <« (xMis[i]-knots[k])*step(xMis[i]-knots[k])

}

ulk] ~ dnorm(0,taul)

}

beta0 ~ dnorm(0,1.0E-8) ; betal ~ dnorm(0,1.0E-8)
muX ~ dnorm(0,1.0E-8) ; tauX ~ dgamma(0.01,0.01)
taul ~ dgamma(0.01,0.01) ; tauEps ~ dgamma(0.01,0.01)

}

where, for example, yx0bs [] is the vector of y; values that have an observed x; partner.

The upper panels of Figure 12 summarize the MCMC output produced by BUGS for the
nodes u,, o, and o,. The true values, (16), from which the data were simulated are shown
as vertical dashed lines in the posterior density plots. The lowest panel monitors the effective
degrees of freedom for estimation of f. The chains are seen to be reasonably well behaved.

Figure 13 shows the estimate of f as well as pointwise 95% credible intervals. The
missing data, known from simulation but hidden from the methodology, are shown as grey
circles.

Lastly, we study some of the output for the hidden node x™°. Five components
were chosen at random, and the MCMC summaries are shown in Figure 14. Interestingly,
the posterior densities of some of the ™ components are multimodal. This arises from the
periodic nature of the underlying signal. Knowledge about the ordinate manifests in the pos-
terior of x?‘is as two or three clumps of probability mass corresponding, roughly, to vertical
slicing of f at that ordinate.

We close this subsection by noting that a moderate amount of research on missingness
for mixed model-based semiparametric regression now exists. References include French &
Wand (2004), Chen & Ibrahim (2006), Geraci & Bottai (2006) and Yuan & Little (2007).

mis

5.3. Predictors subject to measurement error

In the previous subsection, the x;s in (15) were subject to missingness. Now suppose
instead that they are subject to measurement error. In this case, rather than observing x; we
observe
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Figure 12. Summary of MCMC-based inference for parameters in the missing predictor nonparametric

regression model. The columns are: parameter, trace plot of MCMC sample, plot of sample against

1-lagged sample, sample autocorrelation function, kernel estimates of posterior density and basic nu-

merical summary. The vertical dashed lines in the density plots correspond to the true values of the
parameters according to the simulation set-up.

wi=xtu 1<i<n (18)

where the z; are i.i.d. N(O, o?) and independent of the x;s. The contamination variance, 0%,
is assumed to be known.

This is an instance of nonparametric regression with measurement error. Carroll et al.
(20006) is a recent survey of this and related topics. A hierarchical Bayesian model for (14)
and (18) is

K
vilxi, Bou 62N (ﬁo + B+ 3wz, of> culo2 ~ N(0,021),
k=1
Xi | oy, UfiPS'N(ux, crxz), w; |xiiPS'N(x,-, azz), B~ N(O, Ugl), Wy ~ N(O, U,i),
02 ~IG(A,, B,), o2 ~1G(A;, B.), o} ~IG(A,, By). (19)
The observed data, or evidence nodes, are
€={y.w}
where w is the vector of w;s. The set of parameters, or hidden nodes, is
H={B,ux0., 0 1 0l}.

The graphical representation of (19) is shown in Figure 15.
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Figure 13. MCMC-based estimate of f in the missing predictor nonparametric regression model. The
dashed lines correspond to pointwise 95% credible sets. The grey points are those for which the x values
were missing and not used by the fitting procedure.

BUGS fitting of (19) was tested using the parameter settings given by (16) and (17) and
with o, set to be 0.1. As for the missing data example, spline basis functions have to be
computed inside BUGS, so I used truncated line basis functions with knots

ki = {(K + 1 — k)ymin(x;) + kmax(x;))} /(K + 1), 1<k <K,

(which depend on the hidden x node) and K = 20. The BUGS code is:

model

{

for(i in 1:n)

{

x[i] ~ dnorm(muX,tauX)

w[i] ~ dnorm(x[i],tauZz)

mul[i] <« beta0 + betalsx[i] 4 inprod(u[],Z[i,])
y[i] ~ dnorm(muli],tauEps)

}

for (k in 1:K)

{

knots[k] < ((K+1-k)xranked(x[],1)+ksranked(x[],n))/(XK+1)
for (i in 1:n)

{

Z[i,k] <« (x[i]-knots[k])=*step(x[i]-knots[k])
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Figure 14. Summary of MCMC-based inference for five randomly chosen missing predictors in the

missing predictor nonparametric regression model. The columns are: missing predictor, trace plot

of MCMC sample, plot of sample against 1-lagged sample, sample autocorrelation function, kernel

estimates of posterior density and basic numerical summary. The vertical dashed lines in the density
plots correspond to the true values of the predictors for the simulation.

}

ulk] ~ dnorm(0,taul)

}

beta0 ~ dnorm(0,1.0E-8) ; betal ~ dnorm(0,1.0E-8)

muX ~ dnorm(0,1.0E-8) ; tauX ~ dgamma(0.01,0.01)

taul ~ dgamma(0.01,0.01) ; tauEps ~ dgamma(0.01,0.01)

}

The upper panels of Figure 16 are the analogue of Figure 12 for the current measurement
error example. Once again, the chains are seen to be reasonably well behaved, and the true
parameters are inside the 95% credible sets.

Figure 17 shows the estimate of f as well as pointwise 95% credible intervals. The grey
circles are the unobserved (x;, y;) pairs which, because this is a simulation study, are known.
The curve estimate is seen to be quite reasonable, despite having to adjust for contamination
of the x;s.

Models of type (19) were first formulated by Berry, Carroll & Ruppert (2002).
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Figure 15. Graphical representation of the penalized spline nonparametric regression model with the
predictor subject to measurement error. Shading corresponds to the observed, or evidence, nodes.

6. Variational inference engines

Each of the examples in the previous two sections was performed using an MCMC-based
Bayesian inference engine, namely BUGS. However, MCMC is computationally intensive, and
inference can be quite slow. The example in Section 5.3 involving measurement error took
about a day to run on my laptop computer (Mac OS X; 2.33-GHz processor, 3 Gbytes of
RAM). An alternative to MCMC, which offers the possibility of much faster approximate
inference, is variational approximation. So-called variational inference engines have emerged
in recent years for conducting inference in DAG models. The most prominent is VIBES
(Variational Inference for BayESian networks), authored by Bishop et al. (2003). Several
others are described in Murphy (2007), including a new successor to VIBES named Infer.NET
(Minka et al. 2008) (current web-site: research.microsoft.com/infernet). An illustration of
VIBES is given later in this section. Before that I will provide a brief description of variational
approximation.

Variational approximation is an alternative to MCMC that is gathering steam as a means
of making inference in complex models when the latter becomes untenable. Most contem-
porary literature on variational approximation for graphical models is in Computer Science
rather than Statistics. Review articles that summarize contemporary variational inference are
Jordan et al. (1999), Jordan (2004), Titterington (2004) and Bishop (2006).

The essence of variational approximation is the use of variational forms for non-linear
functions. An example is

log(x) = réni(r)l{éx —log(¢) — 1}, forall x > 0.

The fact that £x — log(&§) — 1 is linear in x for every value of the variational parameter
& > 0 allows for simplifications of expressions involving the logarithmic function. The value
of & can then be chosen to make the approximation as accurate as possible.
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Figure 16. Summary of MCMC-based inference for parameters in the nonparametric regression mea-

surement error model. The columns are: parameter, trace plot of MCMC sample, plot of sample against

1-lagged sample, sample autocorrelation function, kernel estimates of posterior density and basic nu-

merical summary. The vertical dashed lines in the density plots correspond to the true values of the
parameters according to the simulation set-up.

An instructive example of variational inference arises in simple Bayesian logistic regres-
sion:
" eYilBotBixi)

vyl o Bl =]]

T o BB~ N(O.05T). 1<i<n (20)
i=1

where y = (¥1,...,¥n), ¥i € {0, 1} is the ith realization of a binary response variable and
x; is the corresponding predictor. This is a special case of an example given in Jaakkola &
Jordan (2000). Inference about the slope parameter requires

B1 | y] o e P/ f exp (Z[ﬂoyi — log{1 + exp(Bo + rx)}] — B3/ (2a,§)> dpo.
- i=1
2D

The presence of — log{1 + exp(Bo + B1x;)} in the exponent of the integrand makes the
integrals irreducible. However, we can make use of the variational form

—log(1+¢€*) = r;laIé({A(é)x2 + B(&)x + C(&)} forall x € R, (22)

where
A(§) = —tanh(£/2)/(4¢), B(§) = —1/2and C(§) = &/2 — log(1 + €°) + £ tanh(& /2) /4
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Figure 17. MCMC-based estimate of f in the nonparametric regression with measurement error model.
The shaded region corresponds to pointwise 95% credible sets. The black points are the observed
(w, y) pairs (contaminated data). The grey points are the unobserved (x, y) pairs (clean data).

(Jaakkola & Jordan 2000). Figure 18 is a graphical representation of (22), in which the
function — log(1 + ¢*) is seen to be the maximum of a family of parabolas.
In (21) one can then replace

—log{l +exp(Bo + Bixi)} by AGE)XF*+ BE)x+C&E), 1<i<n (23

This entails the introduction of a vector of n variational parameters & = (§;,...,&,).
For any choice of £ € R", one can solve the posterior density problem analytically and arrive
at the following family of solutions:

Bily:&E ~ N(u&),o%(€), &eR",
where

(2nh(&) + 057)(xTy — X/2)
(2n1(8) + 05 2) 26 TAE) + 057 — 4{(5)Tx)

wé) =

and
62(&) = [260)T1E) + 0> — 4 X1/ {207E) + 057}]

with A(§) =tanh(£/2)/(4€) and AME) = %Z?:] A(&;). The variational parameters £ should then
be chosen to make the approximation (23) as accurate as possible. This involves maximization
of the lower bounds on the left-hand side of
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Figure 18. Variational representation of the function — log (1 + ¢*), as the maximum of a family of
parabolas.

AE)x” + B(E)x + C(&) < —log{l +exp(fo + fix)}, 1 <i <n.

An expectation maximization-type iterative scheme can be devised for carrying this out
(Jaakkola & Jordan 2000). Let 8o, 81|y ;€ ~ N(u (§), £(&)) be the variational approximation
to [Bo, B1|y] based on &. Then, withy = (yy,...,y,) and X equal to the n x 2 matrix whose
ith row is (1 x;), the following algorithm usually leads to rapid convergence to the optimum:
Cycle:
L. 2(§) < [05° T4 2X" diag{A(£)}X]"'
2 w(E) < DEX(y - $1)
3. & « /diagonal(X{Z(§) + w(E)u@)TIX].

I compared the posterior distribution approximations for 8y and 8, obtained by means
of this variational approach with data on 223 birth-weight measurements (grammes) and the
occurrence of bronchopulmonary dysplasia (source: Pagano & Gauvreau 1993). Throughout
this example I work with the standardized version of the birth-weights rather than with the
original birth-weight values, and with 0/23 = 10%. Figure 19 shows the variational approxima-
tions to [Bo | ¥1, [B1 | y] and [Bo, B1 | Y]. As a benchmark, I obtained one million realizations
from the posterior densities using MCMC and BUGS, and constructed kernel density estimates
using direct plug-in bandwidth selectors (available in the R packages KernSmooth, Wand &
Ripley 2008, and kS, Duong 2008). We see from Figure 19 that the Jaakkola & Jordan (2000)
variational approximations are reasonable, but not extremely accurate.

Although this example, based on (22), provides an illustration of variational approxima-
tion, it should be pointed out that many other methods exist. A common general approach
to variational approximation involves the theory of Kullback-Liebler divergence; see, for
example, Titterington (2004) and Bishop (2006 section 10.1). It should also be pointed out
that other analytic approximations exist and can be used for approximate inference in DAG
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Figure 19. Assessment of the accuracy of the Jaakkola & Jordan (2000) variational approximation

method. The dashed curves indicate the variational approximation to [B¢ | y1, [81 | y] and [Bo, 1 | y] for

the Bayesian logistic regression fit to data on birth-weights and the occurrence of bronchopulmonary

dysplasia. The solid curves are approximations to the posteriors using MCMC samples of size one
million (obtained using BUGS).

models. A particularly simple and popular one is Laplace approximation, which, for example,
is used by Spiegelhalter & Lauritzen (1990) in DAG models and by Breslow & Clayton (1993)
in generalized linear mixed models.

Current joint research with John T. Ormerod involves a Kullback-Liebler divergence ap-
proach in which the lower bound on the likelihood is reduced to the calculation of n univariate
integrals, which are calculated numerically using adaptive Gauss—Hermite quadrature. The
results for model (20) applied to the bronchopulmonary dysplasia data are shown in Figure 20.
The accuracy is seen to be very good in this case, and considerably better than that of Jaakkola
& Jordan (2000)

I also tested the use of VIBES for Bayesian semiparametric regression by getting it to fit
(8) to the spinal bone mineral density data. Figure 21 is a screen-shot of the specified model
in VIBES, obtained using its graph-drawing interface.
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Figure 20. Assessment of the accuracy of the variational approximation method arising from current

joint research with John T. Ormerod. The dashed curves indicate the variational approximation to

[Bolyl, [B11y] and [Bo, B1 | y] for the Bayesian logistic regression fit to data on birth-weights and the

occurrence of bronchopulmonary dysplasia. The solid curves are approximations to the posteriors using
MCMC samples of size one million (obtained using BUGS).
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Figure 21. Screen-shot of the directed acyclic graph drawn in VIBES for specifying the semiparametric
regression model applied to the spinal bone mineral density data.

Approximate posterior densities for four of the model parameters are shown in Figure 22.
The regression coefficients, corresponding to the indicators for Black and Hispanic, have
narrower posterior densities compared with those obtained using MCMC via BUGS. The
posterior densities for the standard deviation parameters, o, and o, are quite close to the
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Figure 22. Approximate posterior densities for a selection of parameters in the VIBES fit of an additive
mixed model to the spinal bone mineral density data. The MCMC-based approximations are shown for
comparison.
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Figure 23. Bayes estimates for the age effect arising from a VIBES fit of an additive mixed model to the
spinal bone mineral density data.

BUGS answers. The fitted age effects, shown in Figure 23, are also similar to those obtained
via BUGS. However, the credible interval bars cannot be produced from the VIBES output.

Variational inference engines, such as VIBES, constitute a young and emerging field.
They have the potential to yield satisfactory solutions to complex graphical model inferential
problems much more quickly than what is currently being achieved via MCMC. There
is also the question of the statistical properties of variational approximations to quantities
such as maximum likelihood estimators and posterior densities. Jordan (2004) states that
‘variational inference is still in its infancy’ and cites Tatikonda & Jordan (2002) for early
work on asymptotics for variational approximation. Several other relevant references are listed
in section 3.3 of Jordan (2004). In the Statistics literature, pioneering work on variational
approximation theory has been undertaken by D.M. Titterington and co-authors. Examples
of published work to date include Hall, Humphreys & Titterington (2002) and Wang &
Titterington (2004, 2006)

7. Example: relative cancer mapping with missingness

We applied the new Ormerod & Wand variational approximation methodology, men-
tioned in the previous section, to some real data for which semiparametric regression in the
face of missingness is appropriate. The data, corresponding to a female cancer study in Cape
Cod, Massachusetts, USA, are described in French & Wand (2004). Of primary interest for
these data is relative cancer mapping, whereby the geographical variation of a certain cancer
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Figure 24. Graphical representation of the semiparametric regression missing data model for the relative
cancer mapping example.

type, relative to other cancers, is assessed. In this illustration, the cancer type of interest is
lung cancer. Define

{1 female i has lung cancer

1ungC L=
unghancer; 0 female i has other type of cancer

for 1 < i < n, where n = 2540 is the number of females in the study. For each female in the
study we observe the longitude (lon;) and latitude (1at;) values of her residence, her age in
years (age;) and whether or not she has ever smoked (smoked;). An exception is the 15.4%
of females for which smoking information is missing.

To account for age and smoking, as well as for missingness in smoking, we entertained
the hierarchical Bayesian additive models

lungcancerj | smoked;, Bo, Bsmk, ,Bagea ﬂgeo, Ugyge, Ugeos O'azge, ngeo
ind. . e
= Bernoulh[loglt 1{/30 + Bsmksmoked; + f(agei; Bages Uazge)
+ 8(10111‘, lat;; Byeos O'gzeo) }]
~2

smoked; | ﬂ07 ﬂagea ﬂgeo’ ﬁagea ﬁgEOa Eazgea Ggeo
ind. . o1 (T ~ ~ ~ ~
~ Bernoulh[loglt 1{/30 + f(agei;ﬁage, aazge) + g(loni, lat;; Becos ngeo) }]

The univariate functions f and f are handled analogously to that for age in the spinal bone
mineral density example of Section 4. The bivariate functions g and g use penalized thin plate
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Figure 25. Ormerod & Wand variational approximation fit to the female lung cancer data. The displayed

fitfor each predictor corresponds to slices of the fitted model with the other predictors set to their medians.

Panel (a): estimate of the effect of age on the relative probability of lung cancer. Panel (b): estimate

of the effect of geography on the relative probability of lung cancer. Panel (c): estimate of the effect

of age on the probability of ever being a smoker. Panel (d): estimate of the effect of geography on the
probability of ever being a smoker.

splines as described in chapter 13 of Ruppert et al. (2003). Figure 24 provides a graphical
description of this model. Our variational approximations for the missing smoking data node
are similar in nature to those described in section 5.2 of Jaakkola & Jordan (2000).

The functional components of our variational approximation fit to the above model are
shown in Figure 25. The upper panels of Figure 25 show the effects of age and geographical
location on lung cancer occurrence (relative to other cancer types). The age curve is monotonic,
as expected. The geographical fit suggests a ‘hot spot’ around —70.4° longitude and 41.65°
latitude. The lower panels are the fitted effects of age and geography on smoking status. Some
geographical variability in smoking status is apparent. Furthermore, there is an interesting
decline in the age curve after about 75 years. However, there is also a high degree of variability
(not shown) in these function estimates for high ages.

8. Potential for new semiparametric regression applications

A final advantage of the graphical models viewpoint of semiparametric regression is that
it brings the latter field closer to other areas of research that rely heavily on graphical model
theory and methodology. Examples include social networks (e.g. Wasserman & Faust 1994),
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causal inference (e.g. Cox & Wermuth 2001; van der Laan & Robins 2003), hidden Markov
models (e.g. Cappé, Moulines & Ryden 2005) and phylogenetic trees (e.g. Jordan 2004).

Synergistic development of this type has been recently witnessed as a result of mixed
model representations of semiparametric regression. Semiparametric regression methodology
is now very much a part of longitudinal data analysis (e.g. Fitzmaurice et al. 2008), spatial
statistics (e.g. Hennerfeind, Brezger & Fahrmeir 2006; Crainiceanu et al. 2008) and analysis
of complex sample surveys (e.g. Breidt & Opsomer 2008). There is great potential for similar
outcomes in the graphical model realm.

9. Concluding remarks

I have explained why I believe graphical models to be a useful structure for semipara-
metric regression analysis. Particular attention has been paid to non-standard situations in
which there is more to gain from the graphical models viewpoint. As theory, methodology
and software for graphical models continue to be developed, I envisage sophisticated semi-
parametric regression analyses becoming more routine and streamlined by taking advantage
of graphical model representations.
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