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Fast Computation of Auxiliary Quantities in 
Local Polynomial Regression 

B. A. TURLACHand M. P. WAND 

We investigate the extension of binning methodology to fast computation of several 
auxiliary quantities that arise in local polynomial smoothing. Examples include degrees 
of freedom measures, cross-validation functions, variance estimates, and exact measures 
of error. It is shown that the computational effort required for such approximations is of 
the same order of magnitude as that required for a binned local polynomial smooth. 

Key Words: Binning; Cross-validation; Error degrees of freedom; Kernel estimator; 
Linear smoother; Mean average squared error; Smoother matrix; Standard error. 

1. INTRODUCTION 

Fast computational methods for local polynomial kernel regression have received 
considerable attention in the recent literature. Witness the work of Cleveland and Grosse 

(1991), Hirdle and Scott (1992), Fan and Marron (1994), Seifert, Brockmann, Engel, 
and Gasser (1994), Loader (1994), and Wand (1994). 

In each of these articles the main focus has been on fast computation of the curve of 

interest, usually a regression function estimate or "scatterplot smoother." In nonparametric 
regression analysis, however, there are often several auxiliary quantities that need to be 

computed. Examples are: 

* the error degrees of freedom measure for diagnosis and comparison of different 
smoothers (e.g., Hastie and Tibshirani 1990); 

* the cross-validation criterion function for automatic choice of the smoothing pa- 
rameter; 

* estimates of the error variance; and 
* estimates of standard errors in partially linear models. 

If the data set contains n observations, then each of these auxiliary quantities requires 
O(n2) operations for exact computation. This can mean an enormous computational cost 
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for large data sets and has resulted in-most notably in the smoothing spline literature- 
the development of approximations to some of these quantities. For example, Hastie and 
Tibshirani (1990) devoted an appendix of their monograph to the development of an 

approximation to the error degrees of freedom that can be computed in O(n) operations. 
The use of binning to speed up computation of kernel estimators was first developed 

in the density estimation context by Scott (1981, 1985) and Silverman (1982). The close 

similarity between their two approaches is not generally recognized. They essentially 
differ only in the kernel used and the method by which the discrete convolutions are 

computed, with Silverman (1982) using the fast Fourier transform for this task. Fan and 
Marron (1994) extended binning ideas to local polynomial kernel estimators. The com- 

putational speed of this approach is apparent in the fact that the binned approximation 
to a function estimate can be computed on a grid of size M using 0(M) kernel evalua- 
tions. Moreover, it can be shown that the binned approximation can be made arbitrarily 
accurate by increasing the value of M (e.g., Hall and Wand in press). 

The purpose of this article is to show how these ideas can be applied to fast compu- 
tation of the auxiliary quantities of the type described previously. In each case it is seen 
that use of the binning principle reduces the computational labor to that of computing a 

regression estimate over a grid, and therefore also requires 0(M) evaluations. 
The local polynomial smoother is described in Section 2. In Section 3 we briefly 

describe the binning principle and, in Section 4, some key results for handling common 
forms are highlighted. Section 5 illustrates how the binning principle can be used for fast 

computation of a variety of auxiliary quantities. Section 6 discusses some generalizations 
and Section 7 contains an assessment of the accuracy of the binned approximations of 
the preceding sections. 

2. LOCAL POLYNOMIAL SMOOTlHERS 

Each of the auxiliary quantities that we consider can be defined for general linear 
smoothers (e.g., Hastie and Tibshirani 1990) so we will start at this level of generality. 

A smooth of the regression data set (X1, Y1),..., (Xn, Yn) is defined to be 

m = [-(Xi), . .,(Xn)]T, 

where m(x) denotes the value of a regression estimate, or scatterplot smoother, at the 

point x. Common methods for obtaining m(x) are smoothing splines, regression splines, 
local polynomials, kernel estimators, and wavelets. If there exists an n x n matrix S such 
that 

m= SY, 

where Y denotes the vector of the Yi's, then mi is called a linear smooth of the data. 
We usually refer to S as the smoother matrix. There are a number of important auxiliary 
quantities that can be defined for general linear smoothers. For example, Hastie and 
Tibshirani (1990) defined the error degrees offreedom of a smoother as 

dfrr = n- 2tr(S) + tr(SST). 
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The class of linear smoothers that we consider in this article are those commonly 
referred to as local polynomial smoothers. For the pth degree local polynomial smoother 
the (i,j) entry of S is 

Sij = e T(X WxiXxi) -1X Wxiej (2.1) 1 x'-Xi Xi 

where ei is the column vector with 1 in the ith position and zeroes elsewhere, 

X1 X- x ... (XI - x)P 
X-= :. and W =- diag K ( 

- 
w(Xi) 

I<i<n h ) 
1 X -X .. (Xn -X) 

(2.2) 
Typically, K is a smooth bell-shaped function such as the standard normal density, called 
the kernel, and h > 0 is a scaling parameter, usually referred to as the bandwidth. The 
function w is equal to the identity for local polynomial smoothing, but in likelihood- 
based models (discussed in Sec. 6.1) w(Xi) may be something different. For example, 
in diagnostics for binary response models w(Xi) is an estimate of P(Yi = 0\Xi)P(Yi = 

1lXi). The local polynomial smooth at a general point x is 

mp(x) = eT ( W X X x WX Y. (2.3) 

3. THE BINNING PRINCIPLE 

The need for fast computational methods in local polynomial smoothing is borne out 

by the fact that the explicit expression for mip(x) depends on summations of the form 
n n 

0(x) - L,(Xi) and b(x) = E L(Xi)Yi, (3.1) 
i=l 1i=1 

where Lx is a generic function depending on x. For example, imo(x) -= (x)/0(x) with 

Lx(u) = K{(u - x)/h}. This means that direct computation of M values of rp(x) 
requires O(n x M) function calls. Auxiliary quantities such as dfe require n evaluations 
of mhp(x) resulting in an O(n2) algorithm. If K has compact support then the number of 
kernel evaluations can be reduced to O(n2h). The computational labor for computation 
of such quantities can be significantly reduced by appealing to the binning principle, 
which we now describe. 

Let gl < " K < gM be an equally spaced grid over the range of the Xi's and let 
6 = (gM - gl)/(M - 1) be the gap between successive grid points. The grid count 
(ce, dy) at grid point ge, with respect to linear binning, is given by 

n n 

c = (1 -5- 1(Xi - ge)l)+ and dY = (1 - 16-(Xi - ge)l)+Yi, (3.2) 
i=l1 i=l 

where x+ = max(0, x). Fan and Marron (1994) described a fast algorithm for obtaining 
the (ce, d ). The binning principle says that the quantities in (3.1) be replaced by 

M M 

0(x) = L (ge)cf and (x) = 
Lx((g)d, 

?=1 e=1 
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respectively. The approximation of 0(x) by 0(x) and V(x) by V(x) can be made arbi- 

trarily better by making the grid sufficiently fine (see Sec. 7). 
For local polynomial estimators, Lx (u) = (u-x) for some function K. This entails 

that 

M 

0(g,) = E n{(t -j)}c, j - 1,...M, (3.3) 
e=i 

from which it is apparent that no more than M evaluations of K are necessary for 

computation of 0 over the entire grid. If the kernel has compact support, then even 
fewer, O(Mh), kernel evaluations are necessary. Similar comments apply to the 4(gj). 
An algorithm for efficient computation of a vector of 0(gj) values is given in Scott (1992, 
p. 118). Alternatively, a fast Fourier transform algorithm could be used (Silverman 1982). 

Fan and Marron (1994) applied this principle to obtain fast approximations to the 

pth degree local polynomial smoother by writing mhp(x) in terms of expressions of the 
form 0(x) and &(x). For our purposes it is more convenient to use binned versions of 
the weighted least squares notation used to define mip(x) at (2.3). Let mp(x) be the 
binned approximation to hmp(x) as obtained by Fan and Marron (1994) using the binning 
principle. Define 

1 gl - x (gl - )P 

Ax 
-- 

: *. : 

1 gM -x ... (gM -X) _ 

Wx diag K (fe 
- 

?w(g) 
1<f<M h g) 

C= diag (ce), 
I<e<M 

and 

dY = (dy,...,dY )T. 

Then the binned analogue of the smoother matrix is S, where 

See, = e T(X Wge CXge) X- WC e (3.4) 

because it can be easily shown that 

m p- [rhp(gl), ... , mp (M )]T = SdY. 

In other words, S maps the Y grid counts to the vector of binned smooths at the grid 
points. 
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4. SOME KEY RESULTS 

Several auxiliary quantities of interest can be expressed in terms of the diagonal 
entries of the matrices S and SAST, where A is some diagonal matrix. Therefore, it is 
useful to first study the properties of binned approximations to these two forms. 

The ith diagonal entry of S is 

Sii = e (XT WXiXXi) XXTWx,ei = K(O)e (XTWxiXxi) Ie, l- el(XiWxiXxi) Xi IW WXi , 

but its binned version is 

Sfe = K(O)eT(X WgeCXg)) el (4.1) 

corresponding to the grid points g, ..., gM For example, the Sie can be used to ap- 
proximate tr(S) as follows: 

n M 

tr(S) = Sii See. 
i=l e=l 

Next, we treat (SAST)ii. Typically, Aii = a(Xi) for some function a(.). For exam- 

ple, for calculation of the mean average squared error of a linear smoother (described in 
Sec. 5.5), one needs to take a(Xi) = var(Y/iXi). Let A be the diagonal M x M matrix 
with Aee = a(ge). First, observe that 

(SAST)i = eT(Xxi Wxi Xxi)-XT W2 AXx i (Xx Wxi Xx)ei e 
Xi x Xi AXX, , 

The binned approximation to this quantity is then 

(SAST)ee = e XT(XWgeCXg) XWT 2 W ACXs, (XT w CXg) el = (SACST)e. 

(4.2) 
From this we see that the computation of the (SAST)fe, 1 < f < M, requires about the 
same amount of work as the computation of a binned regression function estimate over 

gl,..., gM and can therefore be carried out relatively quickly. 

5. ILLUSTRATIONS 

5.1 ERROR DEGREES OF FREEDOM 

The binned approximation to dferr follows very straightforwardly from the results of 
the previous section. 

n M 

dferr = n- {2Sii - 
(SST)ii n - {2See 

- (SST)ee}ce. (5.1) 
i=l e=l 

The vectors of Sef and (SST)ee values can be computed using (4.1) and (4.2). 
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5.2 CROSS-VALIDATION 

For a general linear smoother with smoother matrix S the cross-validation criterion 
can be defined to be 

CV {Yi-m(Xi) } -{(I S)Y}-i 
I= 1 - Sii 1 - Sii ^ t 1-^ t -i-1 - - 

For certain common smoothers, this is equivalent to a leave-one-out sum of squares. 
Typically, CV is a function of a smoothing parameter on which S depends. The cross- 
validation choice of the smoothing parameter is the one that minimizes CV. 

Expanding the numerator we see that, for i =- p, 

CV - 
E Yi - 2mp (X)Y + p(X)2 
= S (1 - Si,)2 

which can be written as a sum of terms of the form (3.1). Using the ideas in Section 3, 
and applying the binning principle once, we get 

V d - 2mp (ge)dy + mp(ge)2ce 

e 1 - e(X eW CXge) -IXTWgeee}2 

where the dY are obtained by binning the Y2's. Applying the binning principle once 
more, this time to the smooths in CV, we arrive at the binned approximation 

2 - 2 (ge)dY + mp (g)2 ce dY - 2imp(g)d + f hp(gt)2cg 

e=1 - K(O)eT(eWgCXg)-1e1}2 e= (1 - Se)2 

5.3 VARIANCE ESTIMATION 

For a general linear smoother with matrix S, an estimate of the variance, a2, in a 
homoscedastic nonparametric regression model is 

2 YT(I-S)T(I-S)Y 
dfer 

The numerator of a2 is the residual sum of squares, and the denominator is chosen so 
that a2 is an unbiased estimate of a2 in those situations where there is no bias in the 
smooth SY. Ruppert, Sheather, and Wand (in press) study variance estimators of this 

type in the local polynomial context. 
Binned computation of the denominator for local polynomials is described in Sec- 

tion 5.1. The numerator equals 
n n 

yTy _ 2yTSY + (SY)T(SY) = yTy - 2 mp(Xi)Yi + mp(Xi)2, 
i=l i=l 

so repeated application of the binning principle leads to the approximation 
M M 

yTy - 2 E mp(ge)dY + E mp(ge)2ce. 
e=1 e=1 
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5.4 STANDARD ERRORS 

Consider the partially linear model 

E(YjlXi, Z) = m(Xi) + ,3TZi i = 1,..., n (5.2) 

where m is some unspecified function, and P is a vector of parameters with the same 
dimension as the Zi's. Also, assume that var(Yi Xi, Zi) = o2 and conditional indepen- 
dence of the Yi's. If S is a smoother matrix corresponding to a smooth of the Yi's on 
the Xi's then a common estimate of 3 is 

= {ZT(I - S)Z}-'ZT(I - S)Y 

(e.g., Hastie and Tibshirani 1990), where Z = (Z,..., Z)T. 
The covariance matrix of 3 can be estimated by 

v = &{ZT(I- S)Z}1ZT(I - S)(I - S)TZ{ZT(I - S)Z} 1. (5.3) 

See, for example, Carroll, Fan, Gijbels, and Wand (1995). Expansion of (5.3) reveals that 
the difficult-to-compute components of V are 

ZTSZ and (STZ)T(STZ). 

The entries of ZTSZ can be approximated straightforwardly by noting that they can 
be expressed in terms of a smooth of an appropriate column of Z. Let the notation for 
a pth degree polynomial smooth given at (2.3) be extended to ip(x)Y so that the Y 
vector to which the smoothing is being applied is specified, and let mp(x)Y denote the 

corresponding binned approximation. Also, let Zi denote the ith column of Z. Then the 

(i, j) entry of ZTSZ is 

n M 

(ZTSZ)ij 
= 

E (Xk)Z Zki Em(ge)z dei 
k=l t=1 

Binned approximation of (STZ)T(STZ) takes a little more work. First observe that 

n n \ n \ M 

{(ST (Z) (STz)}i j= S Zsi) SskZsij E uue Ce, (5.4) 
k=l s=l s=l ?=1 

where u = /=i Se,de. It is a relatively straightforward exercise to show that a 
vector of ue values, 1 < f < M, can be computed with the same computational effort 
as a binned local polynomial smooth. 

5.5 MEAN AVERAGE SQUARED ERROR 

Exact risk analysis is a very useful technique for understanding the properties of 
curve estimators in finite samples (e.g., Marron and Wand 1992). The ideas presented in 
this article can be easily extended to fast computation of the exact mean average squared 
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error (MASE) of a local polynomial kernel estimator. Suppose that the data are generated 
according to the model 

Yi = m(xi) + v(xi)1/ , i = 1,...,n, 

where the Ei are uncorrelated random variables with zero mean and unit variance and m 
and v are known. Let 

m = [m(xl),...,m(xn)]T and V = diag{v(xl),... ,v(xn)}, 

respectively, denote the mean vector and covariance matrix of Y. Then the MASE of m, 
can be expressed as 

i n 

MASE( ) = -E E{(xi) m(x,)}2 

i=1 - 

= 1 tr(SVST) + {(S-I)m}2 
i-1 

i E [(SVsT)ee + {i(ge)m m(e)}2] Ce, -=1 

where m(.)m is the binned approximation to the local polynomial smooth of m. 
One could also use these ideas to compute accurate approximations to other global 

error criteria, such as mean integrated squared error. 

6. GENERALIZATIONS 

6.1 LIKELIHOOD-BASED MODELS 

The smoothers described in the previous three sections can be motivated by least 
squares considerations, which is equivalent to maximum likelihood under the assumption 
of normal errors. In recent years there has been a significant amount of research into the 
extension of smoothers to more general likelihoods (e.g., Hastie and Tibshirani 1990). 
In the generalized settings, the auxiliary quantities considered in Section 5 are replaced 
by weighted versions and the function w in (2.2) is no longer the identity. For example, 
the error degrees of freedom corresponding to a smooth on binary response variables is 
given by 

dfr n - 2tr(S) + tr(ASA-ST), 

where A is a diagonal matrix with ith diagonal entry equal to an estimate of P(Y = 

0IXi)P(Yi = ljXi). This situation was considered by Hastie and Tibshirani (1990, p. 
306), who stated that, in the spline smoothing case, approximation of tr(ASA-1ST) 
cannot be easily assessed. 

In the case of local polynomial smoothing the binning principle is able to handle 
extensions of this type quite easily because of 

n M 

tr(ASA-lsT)= Aii (SA- ST)ii E Ate(SA- IST)ece 
i=l ?=l 
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and result (4.2). Note that in this example w(Xi) Aii so there is some cancellation 
when the expression is written out in full. 

6.2 SINGLE-INDEX MODELS 

Carroll et al. (1995) generalized (5.2) to 

E(Y Xi, Zi) = m(c TX,) + TZi, i = 1,.. . n, (6.1) 

where the Xi's are d-dimensional variables and a is a d x 1 vector of coefficients 

satisfying oTc =- 1. This is the partially linear extension of the single-index model 
Hirdle, Hall, and Ichimura (1993). Carroll et al. (1995) derived local polynomial estimates 
of m, a, and 3 in model (6.1). 

The covariance matrix of the estimates (G, 1)T can be estimated by 

V = a2{PRT(I- S)R}-PRT(I - S)(I- S)TRP{PRT(I S)R}-, (6.2) 

where A- denotes a generalized inverse of a square matrix A, 

I - Ala m7(X1)XT ZT T I ~&0'I o0 
R= . and P= (6.3) - I 

m' (Xn XT ZT 

As in the univariate Xi setting, discussed in Section 5.4, the hard work is the computation 
of RTSR and (STR)T(STR), so one can apply exactly the same ideas described there 
to obtain binned approximations to the estimated covariance matrix in this more general 
context. The extension to general likelihood-based models is also straightforward. 

6.3 LOCAL BANDWIDTHS 

The simplest example of a binned kernel estimator that arises in local polynomial 
smoothing contexts is the special case of (3.3) with (-.) = K(./h): 

M L 

0(gj) = Z K{6(f - j)/h}ce = K(6e/h)ce_j, (6.4) 
e=1 e=-L 

where L is the highest f for which K(6/h) > 0. From this second expression it is 

apparent that L evaluations of K are required to compute O(gj) over the entire grid. 
However, this result is dependent on there being just a single global bandwidth h for all 
j. Often it is desirable to have a set of local bandwidths he, 1 < f < M, where hf is 
used for estimation at ge. In this case, (6.4) generalizes to 

Lj 

0(gj)= K(6?/hj)ce-j, 
f=-Lj 

345 



B. A. TURLACH AND M. P. WAND 

(a) Original kernel weights (M=50) 

(b) Discretized kernel weights (Q=10) 

Figure 1. Illustration of Bandwidth Discretization Idea. The 50 kernel weights in (a) are discretized to the 10 
kernel weights in (b). The discretization is done using a logarithmically equally spaced grid of bandwidths. 

where Lj is the smaller of M and the highest f for which K(6b/hj) > 0 (i.e., Lj = 

min(M,max{? : K(6?/hj) > 0})), which means that EM Lj kernel evaluations are 

required. This can be relatively expensive if M is large, such as M = 400. 
An attractive way out of this problem is to discretize the bandwidths onto a grid 

of Q logarithmically equally spaced bandwidths, where Q is much smaller than M, say 
Q = 25. This idea is conveyed by Figure 1, where (a) shows the set of M = 50 kernel 

weights, with bandwidths in increasing order. There is little difference between adjacent 
kernels, however. A subset of size Q = 10 is shown in (b). It is apparent that, if the 
kernels in (a) are replaced by their respective closest kernels in (b) there will be little 

change in the binned approximation. 

6.4 MULTIVARIATE SMOOTHERS 

The extension of the ideas presented here to multivariate smoothers is reason- 
ably straightforward. Wand (1994) provided an account of multivariate local polynomial 
smoothers. Following the notation there, let ge be a typical member of a M1 x ... x Md 
mesh of grid points, where f is a d-variate vector ranging over the index set 
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The d-variate analogue of the binned smoother matrix is not a matrix for d > 1, but 
rather a 2d-dimensional array (See,)ez,e,Ez that satisfies 

m(g) = C See'dej. 

For most of the auxiliary quantities discussed in previous sections, the binned approx- 
imation for multivariate smoothers is a natural extension of the univariate counterpart. 
For example, the multivariate analogue of (5.3) is 

yTy - 2 i m(ge)d' + E mi(ge)2c. 
eel Ez 

7. ASSESSMENT OF ACCURACY 

7.1 ASYMPTOTICS 

Consider the generic estimator O(x) = _ = LX(Xi)Yi and its binned approximation 
4(x) = eMiL Lx(ge)de . If the de are obtained using the linear binning strategy, then 
it is a simple exercise in Taylor expansion to show that for sufficiently smooth Lx, 

n 

l(x) - ~(x) " l~ E R(6-Xi){l - R(6-1Xi)}Lx(Xi)Yi, (7.1) 
i=l 

where R(x) = x- (greatest integer not exceeding x) (Hall and Wand in press). Because 
R is bounded it is clear from (7.1) that the 4(x) converges to 9(x) as 6 - 0. This, in 
turn, guarantees the accuracy of the binned approximations to the quantities presented in 
the previous sections, since they can each be expressed as smooth functions of versions 
of +(x). 

7.2 SIMULATION RESULTS 

To test the accuracy of binned approximations in practical circumstances we con- 
ducted a small simulation study. For df&", CV, 82, and MASE, data were generated 
according to model: Yi = sin(aTrXi) + .5Ei where, for i = 1,..., 1,000, the Xi are inde- 

pendently and uniformly distributed on the unit interval, and ei are independent standard 
normal variates. We considered the extended model Yi = sin(a7rXi) + /Zi + .5Ei, where 

Zi are equi-probable 0-1 random variables to assess the accuracy of binned approxima- 
tions to std. err.(/) = V1/2, the estimated standard error of /. 

The grid size M was fixed at 401, the kernel was the standard normal density 
truncated to [-4,4], and the bandwidth was taken to be 

ho = [2,000(a7r)37rl/2{2aTr - sin(2a7r)}]-1/5, 

an approximation to the conditional MASE-optimal bandwidth. The simulation involved 
500 replications. Table 1 shows the averages and standard deviations of the ratios of the 
exact quantity to its binned approximation for various values of a. 
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Table 1. Averages (standard deviations) of the Ratios of the Exact Quantity to its Binned Approxi- 
mation for 500 Replications of Simulated Data With Bandwidth ho. A full description is given 
in the text. 

a= 1 a=5 a= 10 

df err 1.00001 1.00004 1.00009 
(.0035e-4) (.0385e-4) (.1596e-4) 

CV .99998 .99934 .99717 
(.0358e-4) (.5831 e-4) (2.2403e-4) 

a2 .99998 .99936 .99726 
(.0350e-4 ) (0.5705e-4 ) (2.1664e-4) 

std.err.(/) .99998 1.00001 1.00007 
(0.3102e-4 ) (.0438e-4 ) (.1902e-4) 

MASE .99990 .99890 .99651 
(0.2212e-4 ) (.8121e-4 ) (2.7935e-4) 

One should expect the accuracy to worsen for larger a because there is finer structure 
in the underlying regression function and the optimal bandwidth is smaller. The table 
shows that even in the most extreme case considered here, m(x) = sin(l07rx), the 

binning error using 401 grid points is negligible. 
It is well-known (e.g., Fan and Marron 1994) that binning error is greater for smaller 

bandwidths, since the corresponding function estimates have more curvature. To investi- 

gate the effect of a decrease in the bandwidth on the computation of auxiliary quantities, 
we re-ran the simulation with h = ho/5. We hesitated to use a bandwidth smaller than 
this because the local polynomial estimates tend to become numerically unstable due to 
not having enough points in the fitting window (Seifert and Gasser in press). The results 
are given in Table 2. 

We see that there is some loss of accuracy, although in most cases the error is 
still negligible. The main exception is CV which, for some of the samples, had a binned 

approximation that was much larger than the exact quantity. The reason for this appears to 
be the fact that each summand of the CV function has a pole at a certain small bandwidth. 

Table 2. Averages (standard deviations) of the Ratios of the Exact Quantity to its Binned Approx- 
imation for 500 Replications of Simulated Data With Bandwidth h0/5. A full description is 
given in the text. 

a= a=5 a= 10 

df err 1.0001 1.0004 .9983 
(.0861e-4 ) (2.9790e-4 ) (2.1600e-3 ) 

CV .9996 .9736 .8469 
(0.6841e-4 ) (0.6339e-1 ) (1.7632e-1 ) 

a2 .9997 .9848 .9341 
(.6486e-4 ) (1.6760e-3 ) (5.9306e-3 ) 

std.err.(/) 1.0000 1.0019 1.0103 
(.1036e-4) (3.1504e-4 ) (1.3591e-3) 

MASE .9995 1.0046 1.0155 
( .8648e-4 ) (1.0126e-3 ) (3.1497e-3) 
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Table 3. Averages (standard deviations) of the Ratios of the Elapsed Exact Quantity to its Binned 
Approximation for 500 Replications of Simulated Data With Bandwidth ho. A full description 
is given in the text. 

a= 1 a =5 a= 10 

df err 16.86 (2.64) 27.13 (6.88) 31.05 (9.59) 
CV 8.74 (1.17) 16.37 (3.76) 19.71 (5.28) 
& 2 4.07 (0.54) 6.87 (1.45) 8.23 (2.43) 
std.err.(/3) 16.01 (2.03) 27.76 (6.06) 32.74 (8.96) 
MASE 14.54 (1.84) 25.66 (5.65) 30.47 (8.26) 

It is easiest to explain this problem when p = 0. In this case the ith summand of CV 
has a pole at h = K(0)/{nf(Xi; h)}, where f( ;h) is the kernel density estimator 
based on K. If the bandwidth is such that h - K(0)/{nf(ge; h)} at a certain grid point 
g9, then the binned approximation tends to inflate because of the pole. This problem 
occurred for only a small percentage of the simulated data sets. If, for example, 1% of 
the lowest values are trimmed from the sample of ratios for CV when a = 10, then 
the corresponding table entry becomes 1.0154 (3.1554e-3). This problem is not a major 
concern because, in practice, the objective is to find the minimizer of CV that will occur 
at a much larger bandwidth. To verify this, for each sample in our simulation study we 
calculated the CV curve at 20 logarithmically equally spaced bandwidths ranging from 
five times the binwidth to sixty times the binwidth. We calculated the exact CV curve and 
its binned approximation and the minimizer of each curve. In the case of a = 1, the ratio 
of these minimizers had an average of .9982 (3.181e-3) and in one sample the (absolute) 
minimum of both curves occurred at the smallest bandwidth. For a = 5 the average ratio 
was .9922 (1.037e-2), and for seven samples the minimum of both curves occurred at 
the smallest bandwidth. In this setting the minimum of the exact CV curve occurred 
for two further samples at the smallest bandwidth whereas the binned approximation 
for these two samples had its minimum within the range of bandwidths used. However, 
for a = 10, the minimum of the exact and the binned CV curve was at the smallest 
bandwidth for all of the samples. In this case the CV curve would need to be calculated 
over a grid of smaller bandwidths. This would require use of a smaller binwidth since, in 
our experience, the binwidth should be at most one-fifth of the bandwidth for a normal 
kernel. 

Finally, we investigated the question of how much of a saving binning offers in 
terms of computation time. The simulations used to produce Table 1 were timed using 
the elapsed time component of the S-Plus function unix. time (). Table 3 contains the 
results. It can be clearly seen that the use of binning results in substantial time savings. 
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