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Smoothing in
environmental
epidemiology

Smoothing is a branch of regression analysis that

allows for a predictor to impact the response as

an arbitrary smooth function. It is also known as

nonparametric regression. The purpose is to allevi-

ate the restrictiveness of parametric functional rela-

tionships, such as that imposed by linearity. Envi-

ronmental epidemiology has been a prime area for
application of smoothing for two reasons. First, in

part because of the traditional ties to respiratory epi-

demiology, it has dealt with continuous predictors

almost from the beginning. In contrast, categorical

variables have typified much of the rest of epidemi-

ology until more recently. Continuous variables make

the questions of the shape of the dose-response curve

explicit. In addition, because of its inherent links to

the standard setting, the question of dose-response

has been crucial in environmental epidemiology.
Searches for potential thresholds have been common

for decades and the results of the epidemiology have

often fed into risk assessments, where the shape of
the dose-response curve has been a crucial question.

At the same time, our theoretical and mechanistic

understanding of the disease processes involved have

rarely been advanced enough for us to specify the

form of the dose-response a priori. All of this makes

a flexible approach to determining that relationship

particularly valuable.
Figure I provides a simple illustration of smooth-

ing in environmental epidemiology. The response

variable is daily mortality for the city of Milan' Italy
over a 10-year period. This variable is plotted against

temperature. The curve is the result of smoothing

the data and indicates a highly nonlinear relation-

ship between mean mortality and temperature. Such

a relationship would be difficult to model parametri-

cally. Such a curve is sometimes called a smooth of
the data.

There is a large battery of techniques available

for obtaining a smooth from a scatterplot. The most

popular fall into the categories of kernel smoothing
(e.g. [1, 4,1) and [10]) and spline smoothing (e'g. [3,

5l and [9]). In environmental epidemiology it is com-

mon for the response variable to be discrete, partic-

ularly a binary or count variable. For such data the

standard approach is to use likelihood-based models

such as logistic regression and Poissoq regression.

The concepts of local likelihood and penàlized likeli-
hood allow for the extension to nonparametric func-

tional relationships. The Milan mortality data are

counts, so the smooth in Figure I represents a non-

parametric extension of Poisson regression with a

logarithmic link function.
Most smoothing techniques require the amount of

smoothing to be specified. An intuitive measure of
the amount of smoothing is the effective number of
degrees of freedom (e.g. [6]). This extends the clas-

sical notion of number of parameters. In Figure 2 the

curves correspond to 2,'7 and 35 degrees of free-

dom. Note that 2 degrees of freedom corresponds

to a linear Poisson regression fit; 7 degrees of free-

dom corresponds to the smooth in Figure 1; while
35 degrees of freedom corresponds to a wiggly over-

fitting of the data. From Figure 2 it is apparent that

the degrees of freedom has a profound effect on the

result, and its choice should be treated with caution.

Subsequently, there are a variety of data driven rules

for choosing the degrees of freedom, many of which
are based on classical model selection criteria such as

Akaike's information criterion (AIC) and predicted

residual sum of squares (PRESS). A computation-

ally simpler approximation of the PRESS criterion,
known as generalized cross valid4tion (GCV) [2], is

the most common criterion for selecting the degrees

of freedom automatically
Typically, environmental epidemiological studies

involve assessment of the impact that a particu-

lar environmental exposure has on a health-related
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Figure I Smooth of Milan daily mortality data counts

against temperature ('C)
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Figure 2 Three different smooths of the Milan daily mor-
tality data counts against temperature ('C)

outcome. However, other factors that impact the
outcome need to be taken into consideration, since
they are likely to be confounded with the exposure.
Consequently, multiple predictor regression models
are much more common in environmental epidemiol-
ogy. In the Milan mortality example, scientific inter-
est centers on the impact of total suspended particles
(TSP) on mortality, while temperature is merely a

confounder for which one would like to control. Other

measured variables with possible confounding effects
are relative humidity and seasonality (day number).
A parametric Poisson regression model with these
variables is

mortality, - Poisson[exp(a t Ê TSP¡ ] y1

x temperaturet * yz humidity, -f nt)l (1)

However, as illustrated in Figure 1, temperature has a

nonlinear effect. Also, for l0 years of data, one would
expect the effect of temperature to be approximately
sinusoidal rather than linear. These considerations
suggest the extension to

mortality, - Poisson{exp[ø * É TSP¡

f{,".p"turure,) * /2(humidity,) a f{t)l) (2)

for smooth functions f t, f z and f 3. This is an
example of a generalized additive model [6]. It has

become an important vehicle for analysis of data from
environmental epidemiological studies [8], partly due
to its availability in the commercial software package
S-PLUS'",

Figure 3 shows the result of fitting model (2)
to the Milan data, together with plus and minus
twice approximate pointwise standard error estimates.
The fit was obtained using the function gam( ) in
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Figure 3 Components of the fit of (2) to the Milan mortality data. Each component is centered about its mean. The shaded
regions correspond to approximate *2x approximate pointwise standard error estimates
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S-PLUS'". The smooths for temperature and humidity
each involved 4 degrees of freedom, while that for
day number involved 4 degrees of freedom per year.

Data driven smoothing parameter selection is quite
challenging for multiple predictor models such as

this, so ad hoc choices like '4 degrees of freedom
per year' are common. The function estimates are

shown on the log scale and are centered about their
average. They can be interpreted as the logarithm of
the relative risk due to the value of the correspond-
ing variable. TSP is seen to have a positive impact
on mortality. Relative risk estimates and approximate
confidence intervals can be computed from the model
fit. However, for these data it has been argued [1]
that more sophisticated models that account for mor-
tality displacement provide even better relative risk
estimates.

Smoothing has a great deal to offer in envi-
ronmental epidemiology. It allows for the detection
of nonlinear relationships and better controlling for
covariates. In particular, generalized additive mod-
els allow for the handling of discrete responses and

multiple predictors that typically arise in environ-
mental epidemiology and, due to their availability
in a commercial software package, are accessible to
practitioners.
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