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Comment
John T. ORMEROD

School of Mathematics and Statistics
University of Sydney

Sydney 2006, Australia
(john.ormerod@sydney.edu.au)

M. P. WAND

School of Mathematical Sciences
University of Technology

Sydney, Broadway 2007, Australia
(Matt.Wand@uts.edu.au)

The author is to be commended on the development of this
new piece of methodology, which he names DoIt. We believe
that the method has the potential to be an important element
in the kit-bag of methods for approximate Bayesian inference.
Throughout the article, a number of criticisms have been leveled
toward variational approximations, of which variational Bayes
(VB) is a special case. As much of our recent research has been
in this area, we will focus our comments in defense of this
methodology.

As a basis for comparison between methods, we adapt the
criteria listed in Ruppert, Wand, and Carroll (2003, sec. 3.16),
upon which scatterplot smoothers may be judged, to criteria for
general statistical methodology:

• Convenience: Is it available in a computer package?
• Implementability: If not immediately available, how easy

is it to implement in the analyst’s favorite programming
language?
• Flexibility: Is the method able to handle a wide range of

models?
• Tractability: Is it easy to analyze the mathematical proper-

ties of the technique?
• Accuracy: Does the method solve the problem to sufficient

accuracy?
• Speed: Are answers obtained sufficiently quickly for the

analyst’s application?
• Extendibility: Is the method easily extended to more com-

plicated settings?

Concerning the convenience criterion, we note that VB is part
of the Infer.NET computing framework (Minka et al. 2010). The
Infer.NET framework can be used in any of the .NET languages,
which includes C#, C++, and Visual Basic, and implements the
expectation propagation and Gibb’s sampling algorithms in ad-
dition to VB. The use of Infer.NET for some simple statistical
models is illustrated in Wang and Wand (2011). Although DoIt
is a new idea, we look forward to its implementation in a com-
monly used statistical environment such as R.

The Infer.NET framework is still in its infancy and does not
support all models for which VB algorithms can be derived. In
such cases, the analyst has to implement VB in his/her favorite
programming language.

Under this implementability criteria, VB can also have an
advantage over DoIt. The article describes DoIt over several
pages. But the algorithm can summarized in the following set
of steps, with some notational changes that we believe improve

digestibility. Joseph uses diag(v) to denote the diagonal ma-
trix with diagonal entries corresponding to the vector v and
diag(M) to denote the diagonal matrix formed when the off-
diagonal entries of the square matrix M are set to zero. Fol-
lowing Magnus and Neudecker (1988), we use dg(M) for the
latter to avoid having different meanings of “diag.” We also use
v > 0 to denote all entries of a vector v being positive:

1. Choose a design D = {θ1, . . . , θm} within the parameter
space (discussed below) and set

h =

⎡⎢⎣ p ( y, θ1)
...

p ( y, θm)

⎤⎥⎦ .

2. Define the m×m matrix G(σ ) to have (i, j )th entry

|diag(σ )|−1 exp

[
−1

2
(θ i − θ j )T {diag(σ )}−2(θ i − θ j )

]
.

Solve

σ̂ = argmin
σ>0

[
hT G(σ )−1{dg(G(σ ))}−1G(σ )−1h

]
.

3. Solve

ĉ = argmin
c≥ 0

{
1

2
cT G(σ̂ )c− hT c

}
.

4. Define

z ≡ {diag(G(σ̂ ) ĉ)}−1 h and

a(λ) ≡ ĉT G
(√

σ̂ 2 + λ2
)
G(λ)−1 z

ĉT G
(√

σ̂ 2 + λ2
)
G(λ)−11

for m× 1 vectors λ. Here,
√

σ̂ 2 + λ2 is the m× 1 vector
defined by taking element-wise squares and square roots,
and 1 is an m× 1 vector of 1’s. Solve

λ̂ = argmin
λ>0

[{z − a(λ)1}T G(λ� σ̂ )−1{dg(G(λ� σ̂ ))}−1

×G(λ� σ̂ )−1{z − a(λ)1}],
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where λ̂� σ denotes the element-wise product of λ̂ and
σ .

5. The approximation to the posterior density function
p(θ | y) involves simple calculations involving D, σ̂ , ĉ,
and λ̂, given by (13) and (14) in the article.

The DoIt algorithm may need to follow steps 1–4 many
times to determine a good design set D, which is chosen dif-
ferently depending on whether the posterior mode is known.
If the posterior mode is known, then D is chosen to follow a
Latin hypercube design based on the Laplace approximation
of the posterior density. If the posterior mode is unknown,
or if the Laplace approximation is judged to be inaccurate,
then D is built sequentially by solving an additional suite of
multidimensional optimization problems. The starting points
for these maximization problems are obtained by choosing a
point in the neighborhood of the θ i with the largest approx-
imate leave-one-out error (specific details for this step are
vague on how this neighborhood is chosen). The DoIt algorithm
stops adding points to D when an approximate cross-validation
criterion-based criterion is judged to be sufficiently accurate.
The minimization problems are solved using the Nelder–Mead
algorithm, which does not require derivative information. The
algorithm contains many subproblems. Each of these subprob-
lems may require some tuning for DoIt to obtain reasonable
results. Termination criteria may need to be adjusted, mul-
tiple starting points may be required to ensure Steps 2 and
4 do not obtain poor results, and the size of the neighbor-
hood used for sequential updates of the design may need ad-
justing. Consider the longitudinal data analysis example con-
sidered in section 4.1 of the article. The VB algorithm for
this analysis, corresponding to algorithm 3 of Ormerod and
Wand (2010), requires 10–15 lines of simple R code to im-
plement and no tuning. In comparison, DoIt requires several
multidimensional constrained optimizations and, possibly, some
tuning.

The DoIt algorithm has been custom-designed for models in-
volving continuous random variables with continuous joint dis-

tributions (implied by Theorem 1). Provided that the problem
falls into this category, DoIt appears quite flexible. In particular,
results for the nonlinear regression in section 3.1 are quite im-
pressive and we do not know of a variational approximation for
obtaining suitably accurate approximations for problems of this
type. Furthermore, the only other non-MCMC (Markov chain
Monte Carlo) method that we are aware of, suitable for this
type of problem, is the iterLap method of Bornkamp (2011a).
However, VB is applicable in situations for models with both
discrete and continuous random variables, and it is not lim-
ited to joint distributions that are continuous. For example, the
VB method has been successfully applied to Gaussian mixture
models (McGrory and Titterington 2007) and hidden Markov
models (McGrory and Titterington 2009), and has an advan-
tage over DoIt in this setting. Furthermore, when the prior is
discontinuous, for example, if the horseshoe prior of Carvalho,
Polson, and Scott (2010) is employed, then VB can be applied
(Neville, Ormerod, and Wand 2012). In such a setting, it is un-
clear whether DoIt needs a prohibitively large number of design
points to obtain a sufficiently accurate approximation. In short,
for the criteria of flexibility, VB can handle some models DoIt
cannot and vice versa.

Both methods are simple and fairly easy to understand how
answers are obtained. We admit that few theoretical devel-
opments for variational approximations have been made and
those that exist are context-specific (Hall, Humphreys and Tit-
terington 2002; Wang and Titterington 2006; Hall, Ormerod
and Wand 2011; Hall et al. 2011; Ormerod and Wand 2012).
In terms of tractability, Gaussian interpolation is a reasonably
well-understood technique (e.g., Fasshauer 2007). As noted in
the article, most results for bounding errors for such interpo-
lation methods rely on the fill-distance of the design points.
We do not know of results for obtaining good designs in high-
dimensional spaces. Thus, we concur that a direct application of
DoIt, without using some type of dimension reduction, would
be unsuitable for high-dimensional problems. In comparison,
VB has been successfully applied in genetic association stud-
ies, where the problems can involve parameters numbering in

Figure 1. A comparison of tangent-based variational approximations (JJ), Gaussian variational approximations (GVA), and MCMC for the
bronchopulmonary dysplasia example in Wand (2009).
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Figure 2. Posterior density estimates for the inverse variance components using VB and the grid-based variational approximation described
in Ormerod (2011).

hundreds of thousands (Logsdon, Hoffman, and Mezey 2010;
Carbonetto and Stephens 2011).

Criteria accuracy and speed could be considered together
as one is often traded against the other. Furthermore, these
should be considered in the context of the application at hand.
Consider again the longitudinal data analysis example con-
sidered in section 4.1. Joseph describes the VB approxima-
tions for the variance components as “poor.” We would call
them “reasonable.” Furthermore, these approximations, using
a näive implementation in R (which does not take advan-
tage of the random-effects structure), takes around 0.01 sec
to compute on the first author’s laptop. If, in the context of the
analysis, the analyst was only interested in the posterior ap-
proximations of the coefficients, then VB would be the ideal
choice for this problem. It is hard to compare DoIt with this
in mind as the article does not report how long DoIt takes to
solve this problem, but we anticipate that VB would compare
favorably.

Our second objection to the comparison with variational ap-
proximations with DoIt is that all variational approximations
are lumped together. For example, in section 2.5 of the article,
DoIt is compared with the tangent-based variational approx-
imation of Jaakkola and Jordan (2000), which we denote by
JJ. For this problem, JJ can be markedly inferior to Gaussian
variational approximation (GVA) (Ormerod and Wand 2012),
as we now demonstrate. Consider the example presented in
Wand (2009, sec. 6) in Figure 1 where JJ and GVA are applied.
Clearly, GVA, like DoIt, appears adequately accurate for this
problem, whereas JJ does not. Similarly, again considering the
longitudinal data analysis example considered in section 4.1,
the article compares the VB method described in Ormerod and
Wand (2010) when other variational approximations are supe-
rior in terms of accuracy. Consider, in Figure 2, the grid-based
variational approximation of Ormerod (2011). This approxima-
tion, like the structured mean field variational approximation
described in Wand et al. (2011), offers a general method for
improving variational approximations, albeit at the expense of
speed. Using grid-based variational approximations, adequate
approximations for the marginal posterior densities of the vari-
ance components can be obtained. In this regard, the article
appears to be making a straw-man argument against variational
approximations.

An attraction of VB is that relative ease with which it can
be extended to handle complications such as missing data. This

follows from the locality property of VB, which, as with MCMC,
means that algorithmic components are localized on the directed
acyclic graph of the Bayesian model (e.g., Wand et al. 2011,
sec. 3). In Faes, Ormerod, and Wand (2011), we demonstrated
the extendibility of VB to handling missingness in regression
models. Since missingness leads to an increase in the size of the
Bayesian model (an increase in the number of hidden nodes in
graph theoretical language), we would expect DoIt to run into
difficulties for such models.

In summary, we believe that, while DoIt is a worthy addition
to non-MCMC analysis and that the results presented in the
article are impressive, variational approximations still offer a
competitive alternative for many problems, depending on the
analyst’s weighting of the aforementioned criteria.

ADDITIONAL REFERENCES

Bornkamp, B. (2011a), “Approximating Probability Densities by Iterated
Laplace Approximations,” Journal of Computational and Graphical Statis-
tics, 20, 656–669. [234]

Carbonetto, P., and Stephens, M. (2011), “Scalable Variational Inference for
Bayesian Variable Selection in Regression, and Its Accuracy in Genetic
Association Studies,” Bayesian Analysis, 6, 1–42. [234]

Carvalho, C. M., Polson, N. G., and Scott, J. G. (2010), “The Horseshoe Esti-
mator for Sparse Signals,” Biometrika, 97, 465–480. [234]

Faes, C., Ormerod, J. T., and Wand, M. P. (2011), “Variational Bayesian
Inference for Parametric and Nonparametric Regression With Miss-
ing Data,” Journal of the American Statistical Association, 106, 959–
971. [235]

Fasshauer, G. E. (2007), Meshfree Approximation Methods With Matlab,
(Vol. 6: Interdisciplinary Mathematical Sciences). Singapore: World Sci-
entific. [234]

Hall, P., Humphreys, K., and Titterington, D. M. (2002), “On the Adequacy
of Variational Lower Bound Functions for Likelihood-Based Inference in
Markovian Models With Missing Values,” Journal of the Royal Statistical
Society, Series B, 64, 549–564. [234]

Hall, P., Ormerod, J. T., and Wand, M. P. (2011), “Theory of Gaussian Variational
Approximation for a Poisson Mixed Model,” Statistica Sinica, 21, 369–389.
[234]

Hall, P., Pham, T., Wand, M. P., and Wang, S. S. J. (2011), “Asymptotic Nor-
mality and Valid Inference for Gaussian Variational Approximation,” The
Annals of Statistics, 39, 2502–2532. [234]

Jaakkola, T. S., and Jordan, M. I. (2000), “Bayesian Parameter Estimation via
Variational Methods,” Statistics and Computing, 10, 25–37. [235]

Logsdon, B. A., Hoffman, G. E., and Mezey, J. G. (2010), “A Variational Bayes
Algorithm for Fast and Accurate Multiple Locus Genome-Wide Association
Analysis,” BMC Bioinformatics, 11, 1–13. [234]

Magnus, J. R., and Neudecker, H. (1988), Matrix Differential Calculus With
Applications in Statistics and Econometrics, Chichester: Wiley. [233]

McGrory, C. A., and Titterington, D. M. (2007), “Variational Approximations in
Bayesian Model Selection for Finite Mixture Distributions,” Computational
Statistics and Data Analysis, 51, 5352–5367. [234]

TECHNOMETRICS, AUGUST 2012, VOL. 54, NO. 3

D
ow

nl
oa

de
d 

by
 [

M
at

t W
an

d]
 a

t 0
0:

20
 1

7 
A

ug
us

t 2
01

2 



236 DAVID M. STEINBERG AND BRADLEY JONES

——— (2009), “Variational Bayesian Analysis for Hidden Markov Models,”
Australian and New Zealand Journal of Statistics, 51, 227–244. [234]

Minka, T., Winn, J., Guiver, J., and Knowles, D. (2010), “Infer.Net 2.4,” Avail-
able at http://research.microsoft.com/infernet. [233]

Neville, S. E., Ormerod, J. T., and Wand, M. P. (2012), “Mean
Field Variational Bayes for Continuous Sparse Signal Shrink-
age: Pitfalls and Remedies,” unpublished manuscript. Available at
http://www.uow.edu.au/∼mwand/papers.html [234,235]

Ormerod, J. T. (2011), “Grid Based Variational Approximations’,” Computa-
tional Statistics and Data Analysis, 55, 45–56. [234,235]

Ormerod, J. T., and Wand, M. P. (2010), “Explaining Variational Approxima-
tions,” The American Statistician, 64, 140–153. [234,235]

Ruppert, D., Wand, M. P., and Carroll, R. J. (2003), Semiparametric Regression,
Cambridge: Cambridge University Press. [233]

Wand, M. P. (2009), “Semiparametric Regression and Graphical Models,” Aus-
tralian and New Zealand Journal of Statistics, 51, 9–41. [233]

Wand, M. P., Ormerod, J. T., Padoan, S. A., and Frühwirth, R. (2011), “Mean
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Comment: DoIt—Some Thoughts on How to
Do It
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(Bradley.Jones@jmp.com)

Computational methods to explore posterior distributions, in
particular Markov chain Monte Carlo (MCMC), have played a
dominant role in Bayesian statistics over the last 30 years. These
methods have enabled statisticians and researchers to tackle
problems that defy closed-form solution, greatly expanding the
scope of Bayesian analysis.

Joseph’s ingenious DoIt algorithm uses ideas developed over
the last 20–25 years on statistical modeling of deterministic
functions to develop a direct approximation to complex pos-
terior distributions, without the need for the large sequential
samples required by MCMC. The method can be applied to a
wide variety of problems and offers the promise of accurate re-
sults with substantially reduced computing. The approximation
is a weighted sum of Gaussians, which leads to the significant
advantages that it is simple to normalize and it is easier to com-
pute marginal densities. We think that the method has great
potential and applaud Dr. Joseph for this important new idea.
Our comments focus on some issues where we think further
work might lead to additional improvements in the method.

1. THE DOIT POSTERIOR DENSITY
APPROXIMATION

The DoIt approximation is a linear combina-
tion of basis functions of the form g(θ; νi ,�) =
exp{−0.5(θ− νi)′�−1(θ− νi)}, where νi is an evalua-
tion point and � plays the role of a covariance matrix in
a multivariate Gaussian density. The matrix � is clearly
important in determining the quality of the DoIt approximation.
But there are three important issues to consider: (1) What
happens if the variances are too large? (2) What happens if the
variances are too small? (3) What happens if the orientation is
chosen poorly?

To see what can happen when the variances are too large, we
consider the nonelliptical posterior density from Haario et al.
that is studied in section 3.2. There is a single posterior mode
at (0,3). The second derivatives of log [h(θ)] at the mode lead
to a diagonal covariance matrix whose entries are 100 and 1,
respectively. Even for evaluation points very close to the mode,
the associated Gaussian basis functions assign nonnegligible
density to θ values that have negligible posterior density (e.g.,
θ= (15,3), with ν at the mode). With evaluation sites in the same
region, the kriging predictor will “correct” for this error, but to
do so, it must assign some basis functions positive coefficients
and others negative coefficients. So, the problem of potentially
negative density values is compounded. In this case, we think
that it would be beneficial to “shrink” the variances (relative
to the second derivatives) for the purpose of fitting the DoIt
approximation. The fraction of negative coefficients in the initial
DoIt fit could be a useful diagnostic here—a large fraction of
negative coefficients may suggest that the variances are too
large.

Large variances can also cause computational problems. The
initial kriging estimator involves solving the linear system
Gc = h, in which G is a correlation matrix. With large vari-
ances, G may be an ill-conditioned matrix for which the solu-
tion is numerically unstable. For the Haario et al. example with
our cross-validation estimates of the variances, 20 of the 100
singular values of G were effectively 0.

On the other hand, the problem of having variances that are
too small is that the Gaussians centered near the mode will fail to

© 2012 American Statistical Association and
the American Society for Quality
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