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Appendix A: Computational Details

A.1 Gauss-Hermite Quadrature for Evaluation of B(r)

Here we briefly describe numerical evaluation ofB(r) using the adaptive Gauss-Hermite quadra-
ture procedure developed by Liu & Pierce (1994) for approximating positive Gaussian integrals.

For r = 0, 1, 2, . . . we have

B(r)(µ, σ2) =

∫ ∞
−∞

b(r)(µ+ σx)φ(x)

φσ∗(x− µ∗)
φσ∗(x− µ∗)dx

=

∫ ∞
−∞

[√
2σ∗b(r)(µ+ σ(µ∗ +

√
2σ∗x))φ(µ∗ +

√
2σ∗x)ex

2
]
e−x

2

dx

for any µ∗ and σ∗. We choose µ∗ and σ∗ so that the integrand of B(0)(µ, σ2) = B(µ, σ2) is “most
Gaussian” in shape so that

µ∗ = argmax
x

{b(µ+ σx)φ(x)} and σ∗ = −

{[
d2

dx2
log {b(µ+ σx)φ(x)}

]
x=µ∗

}−1/2
.

We use the values of µ∗ and σ∗ corresponding to r = 0 because it is both computationally
cheaper to evaluate µ∗ and σ∗ once and because b(r) may not be positive everywhere (poten-
tially making the corresponding evaluation of σ∗ problematic). We then apply Gauss-Hermite
quadrature which uses∫ ∞

−∞
g(x)e−x

2

dx =
N∑
k=1

wkg(xk) +

√
πN !

2N(2N)!
g(2N)(ξ), for some −∞ < ξ <∞

and some integer N . This is exact when g(x) is a polynomial of degree 2N or less. Hence, we
may approximate B(r)(µ, σ) by

B(r)(µ, σ) ≈
N∑
k=1

w∗kb
(r)(µ+ σx∗k)φ(x

∗
k)
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where w∗k =
√
2σ∗wke

x2k and x∗k = µ∗ +
√
2σ∗xk and the wk and xk values are the weights and

abscissa of standard (or non-adaptive) Gauss-Hermite quadrature respectively.
There are several ways of obtaining wj and xj in practice. Tables for these values can be

obtained from Abramowitz & Stegun (1972, Chapter 25). The function gauss.quad() in the
R package statmod (Smyth, 2009) may also be used to find the wjs and xjs.

A.2 Notation Useful for Derivative and Hessian Expressions

Let f be a real-valued function in the d× 1 vector x = [x1, . . . , xd]
T . Then the derivative vector

Dxf(x), is the 1 × d with ith entry ∂f(x)/∂xi. The corresponding Hessian matrix is given by
Hxf(x) = Dx{Dxf(x)}T . We extend the B notation to higher derivatives as follows:

B(r)(µ, σ2) ≡
∫ ∞
−∞

b(r)(σx+ µ)φ(x) dx.

DefineQ(A) ≡ (A⊗1T )�(1T ⊗A) whereA�B is the element-wise product of two equi-sized
matricesA andB. Next, we letDp denote the duplication matrix of order p defined through the
relationship vec(A) = Dpvech(A) for a symmetric p × p matrix A. Lastly, for each 1 ≤ i ≤ m,
let B(r)(β,µi,Λi) ≡ B(r)(X iβ +Ziµi,dg(ZiΛiZ

T
i )).

A.3 Derivative Vector of Lower Bound on Log-Likelihood

The derivative vector of ` ≡ `(β,Σ,µ,Λ) with respect to (β,vech(Σ),µ1,vech(Λ1), . . . ,µm,vech(Λm))
is D ` =

[
Dβ `,Dvech(Σ) `,Dµ1

`,Dvech(Λ1) `, · · · ,Dµm `,Dvech(Λm) `
]
. We now give matrix algebraic

expressions for each of these components:

Dβ ` =
m∑
i=1

{yi − B(1)(β,µi,Λi)}TX i,

Dvech(Σ) ` = 1
2

m∑
i=1

vec{Σ−1(µiµTi + Λi)Σ
−1 −Σ−1}TDK ,

and for 1 ≤ i ≤ m

Dµi ` = {yi − B(1)(β,µi,Λi)}TZi − µTi Σ−1,

Dvech(Λi) ` = 1
2
vec[Λ−1i −Σ−1 −ZT

i diag{B(2)(β,µi,Λi)}Zi]
TDK .

Also, define θ ≡ [βT ,vech(Σ)T ]T and ξ = [ξT1 , . . . , ξ
T
m]

T to be the vectors containing the unique
model and variational parameters, respectively where ξi = [µTi ,vech(Λi)

T ]T , 1 ≤ i ≤ m. Fi-
nally, define the gradient vectors gθ ≡ [(Dβ `), (Dvech(Σ) `)]

T and
gξi ≡ [(Dµi `), (Dvech(Λi) `)

T ]T .
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A.4 Hessian Matrix of Lower Bound on Log-Likelihood

The Hessian matrix of ` with respect to (β,vech(Σ),µ1,vech(Λ1), . . . ,µm,vech(Λm)) is H ` =[
Hθθ

HT
θξ

Hθξ

Hξξ

]
where in keeping with notation given in Section Appendix A.3 for the θ and ξ, the

Hessian matrix components are defined as Hθθ ≡ blockdiag(Hθθ `,Hvech(Σ)vech(Σ) `), Hθξ =
[Hθξ1 , . . . ,Hθξm ],Hξξ = blockdiag(Hξ1ξ1 , . . . ,Hξmξm). For 1 ≤ i ≤ m

Hξiξi ≡
[

Hµiµi ` Hµivech(Λi) `
Hvech(Λi)µi ` Hvech(Λi)vech(Λi) `

]
and Hθξi ≡

[
Hβµi ` Hβvech(Λi) `

Hvech(Σ)µi ` Hvech(Σ)vech(Λi) `

]
,

where

Hθθ ` = −
m∑
i=1

XT
i diag{B(2)(β,µi,Λi)}X i,

Hvech(Σ)vech(Σ) ` = 1
2
DT

K

(
m(Σ−1 ⊗Σ−1)−

m∑
i=1

[Σ−1 ⊗M i +M i ⊗Σ−1]
)
DK ,

withM i = Σ−1(µiµ
T
i + Λi)Σ

−1 and, for 1 ≤ i ≤ m,

Hβµi ` = −XT
i diag{B(2)(β,µi,Λi)}Zi,

Hβvech(Λi) ` = −1
2
XT

i diag{B(3)(β,µi,Λi)}Q(Zi)DK ,

Hvech(Σ)µi ` = DT
K{(Σ−1µi)⊗Σ−1},

Hvech(Σ)vech(Λi) ` = 1
2
DT

K(Σ
−1 ⊗Σ−1)DK ,

Hµiµi ` = −ZT
i diag{B(2)(β,µi,Λi)}Zi −Σ−1,

Hµivech(Λi) ` = −1
2
ZT
i diag{B(3)(β,µi,Λi)}Q(Zi)DK ,

Hvech(Λi)vech(Λi) ` = −1
4
DT

K [Q(Zi)
Tdiag{B(4)(β,µi,Λi)}Q(Zi) + 2(Λ−1i ⊗Λ−1i )]DK .

A.5 Newton-Raphson Scheme

We are a now in a position to describe an efficient Newton-Raphson scheme for solving the
maximization problem (5) in Section 3. In particular, we make use of the block-diagonal struc-
ture in the (µ,Σ) section of Hββ` to reduce the number of operations to O(m). Define

sθξ ≡

(
Hθθ −

m∑
i=1

HθξiH
−1
ξiξi
HT
θξi

)−1(
gθ −

m∑
i=1

HθξiH
−1
ξiξi
gξ

)
.

and let θ(0) and ξ(0)i , 1 ≤ i ≤ m, be starting values of the relevant parameter vectors and let a
superscript of (t) denote the same vectors after t iterations of the Newton-Raphson algorithm.
Then the updates are given by:

θ(t+1) = θ(t) − s(t)θξ and ξ
(t+1)
i = ξ

(t)
i − (H

(t)
ξiξi

)−1(g
(t)
ξi
−H(t)

ξiθ
s
(t)
θξ), 1 ≤ i ≤ m. (1)

Note that these updates involves inversion of ‘small’ matrices – i.e. those of dimension similar
to β and the ui. The Newton-Raphson scheme then involves repeated application of (1) until
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convergence. If an update results in Σ being negative definite we switch the parameterization
Σ = RTR where

R =


er11 r12 · · · r1K
0 er22 · · · r2K
...

... . . . ...
0 0 · · · erKK


and the rijs are unconstrained. This is a minimal unconstrained parameterization for Σ which
simultaneously ensures identifiability of the rijs and positive definiteness of Σ. An analogous
reparameterization is made if any of the Λis are negative definite. The derivative and Hes-
sian formula of Appendix A.3 and A.4 under this parameterization can be derived with a little
modification. Finally, to increase the robustness of the Newton-Raphson algorithm we incor-
porated step-halving to ensure that the variational log-likelihood increased at each step of the
algorithm.

A.6 Asymptotic Covariance Matrix

Results used in Appendix A.5 that take advantage of diagonal structure in H`(β,Σ,µ,Λ) can
also be used to obtain a streamlined expression for the asymptotic covariance matrix of the

model parameters. These lead to ̂Asy. Cov(θ̂) = −
[
Hθθ −

∑m
i=1HθξiH

−1
ξiξi
HT
θξi

]−1
which al-

lows standard errors to be computed in O(m) operations.

Appendix B: Proofs

B.1 Proof of Theorem 1

The proof relies on straightforward algebra and the following lemmas:

LEMMA 1: [THEOREM 22 OF MAGNUS & NEUDECKER (1988)] LetA be a positive definite matrix
andB be a positive semidefinite matrix of the same dimensions asA. Then |A+B| ≥ |A|with equality
if and only ifB = 0.

LEMMA 2. [SPECIAL CASE OF THEOREM 7.7.6 OF HORN & JOHNSON (1985)] Let the symmetric
matrixA be partitioned as [

A11 A12

AT
12 A22

]
where A11 is square and invertible. Then A is positive definite if any only if both A11 and
A22 −AT

12A
−1
11A12 are positive definite.

LEMMA 3. Let Ψ be a symmetric, positive definite mK × mK matrix. Given the K × K blocks Ψi,
1 ≤ i ≤ m, down the main diagonal of Ψ, the determinant |Ψ| is uniquely maximized by setting all
other entries of Ψ equal to zero.

Proof of Lemma 3. Consider the partition of Ψ:

Ψ =

[
Ψ̃ C
CT D

]
.
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where Ψ̃ is anm(K−1)×m(K−1) matrix,C is anm(K−1)×K matrix andD is aK×K matrix.
Then, from a standard result on determinants of partitioned matrices, |Ψ| = |Ψ̃||D−CT Ψ̃

−1
C|.

Since Ψ is positive definite then, from Lemma 2, the matrices Ψ̃, D − CT Ψ̃
−1
C must also

be positive definite. Also Ψ−1 is positive definite, which implies that CT Ψ̃
−1
C is positive

semidefinite.
We shall prove the lemma by induction over m. The lemma holds trivially when m = 1.

By the induction hypothesis, we may assume that |Ψ̃| is uniquely maximized by taking the
off block-diagonal components of Ψ̃ to vanish. For Ψ̃ and D fixed, we can use Lemma 1 with
A = D − CT Ψ̃

−1
C and B = CT Ψ̃

−1
C to show that |D − CT Ψ̃C| is uniquely maximized by

taking C = 0. The lemma then follows by induction.
�

The right-hand side of (6) is Section 3, with q set to the N(µ,Σ) density and p(y|u) given by
(3) in Section 3, is

`(β,Σ,µ,Λ) = mK
2

+ yT (Xβ +Zµ)− 1T B(Xβ +Zµ,dg(ZΛZT )) + 1T c(y)

−1
2
{µTG−1µ+ tr(G−1Λ)}+ 1

2
log |G−1Λ|.

Now consider the special case of the grouped data GLMM (1) in Section 2. Applying the defi-
nitions of yi,X i and Zi given in Section 2 and setting Z = blockdiag1≤i≤m(Zi) andG = I ⊗Σ
we obtain

`(β,Σ,µ,Λ) =
∑m

i=1

[
yTi (X iβ +Ziµi)− 1Ti B(X iβ +Ziµi,dg(ZiΛiZ

T
i )) + 1Ti c(yi)

+1
2
{log |Σ−1| − µTi Σ−1µi − tr(Σ−1Λi)}+ K

2

]
+ 1

2
log |Λ|

By Lemma 3, |Λ| is maximal for Λ = blockdiag(Λ1, . . . ,Λm). Hence, there is no loss from
replacement of 1

2
log |Λ| by 1

2

∑m
i=1 log |Λi|, leading to the expression (4) in Section 3.

B.2 Consistency of Gaussian Variational Approximation for Simple Generalized Linear Mixed
Models

Hall, Ormerod & Wand (2011) studied the theoretical properties of GVA in the Poisson case
with (X iβ + Ziui)j = β0 + ui + β1Xij (the design structure of Example 1 in 2) and ni = n for
all 1 ≤ i ≤ m. Note that we have changed from using xijs to Xijs so as to treat the design
as random. Extending these theoretical properties for the general one-parameter exponential
family case is not a simple matter. This is due to the fact the proofs in Hall et al. (2011) rely on,
amongst other things, that E(Yij|Xij, Ui) = exp(β0+Ui+ β1Xij) which allows separation of the
eβ0 , eUi and eβ1Xij through multiplication and the fact that the exponential function is closely
connected to moment generating functions. Thus, in this section, instead of pursuing rigor-
ous proofs for this extension, we provide heuristic arguments for the consistency for simple
generalized linear mixed models with

p(Yij|Xij, Ui) = exp {Yij(β0 + Ui + β1Xij)− b(β0 + Ui + β1Xij) + c(Yij)}
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for 1 ≤ i ≤ m, 1 ≤ j ≤ n where n some fixed positive integer. For this case the variational
lower bound on the log-likelihood is given by

`(β, σ2,µ,λ) =
m∑
i=1

n∑
j=1

Yij(β0 + β1Xij + µi)−B(0)(β0 + β1Xij + µi, λi) + c(Yij)

−m
2
log(σ2) +

1

2

m∑
i=1

log(λi)−
1

2σ2

m∑
i=1

(µ2
i + λi)

where B(r)(µ, σ2) =
∫∞
−∞ b

(r)(µ+ σx)φ(x) dx. Next, let

(β̂, σ̂2, µ̂,λ) = argmax
β,σ2,µ,λ

`(β, σ2,µ,λ).

We are interested in the values of (β̂, σ̂2, µ̂,λ) values as n and m approach∞.
The heuristic proof for the consistency and rates of convergence for the estimators β̂ and σ̂2

involves the following three steps:

1. Simplifying GVA, using asymptotic arguments, to show that the GVA is similar to a fixed
effects model.

2. Using likelihood theory the rates of convergence of the parameters in the fixed effects
model are found.

3. The rates of convergence of the GVA estimates are then shown to be asymptotically close
to the parameter estimates in the fixed effects model.

First we make the following assumptions:

(A1) For 1 ≤ j ≤ n, the triples (Xij, Yij, Ui) are independent and identically distributed as
(Xi, Yi, Ui), 1 ≤ i ≤ m, say, which in turn is distributed as (X, Y, U);

(A2) the random variables X and U are independent;

(A3) the sets of variables Si = {(Xij, Yij, Ui) : 1 ≤ j ≤ n}, for 1 ≤ i ≤ m, are independent and
identically distributed;

(A4) each Yij , conditional on both Xij and Ui, has the distribution

p(Yij|Xij, Ui) = exp
{
Yij(β

0
0 + Ui + β0

1 Xij)− b(β0
0 + Ui + β0

1 Xij) + c(Yij)
}

where β0
0 and β0

1 denote the true values of β0 and β1 respectively;

(A5) each Ui is normal N(0, (σ2)0), where (σ2)0 denotes the true value of σ2, for some (σ2)0 > 0;

(A6) when choosing (β̂
0
, β̂

1
, σ̂2, µ̂, λ̂) we search in a bounded rectangular region [−C1, C1] ×

[−C1, C1] × [C−11 , C1] × [−C2, C2]
m × [C−11 , C1]

m where C1 > max(|β0
0 |, |β0

1 |, (σ2)0, 1/(σ2)0)
and C2 is a sufficiently large (but finite) constant;
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(A7) the random variable X is bounded;

(A8) and the functions
ψk(t0, t1) = EX

[
Xkb(2)(t0 + t1X)

]
for k = 0, 1, 2 are well defined for all real t0, t1.

The first (A1)-(A5) were used explicitly by Hall et al. (2011) whilst (A6) is an extension of (A11)
of Hall et al. (2011). Assumptions (A7) and (A8) are imposed to simplify results presented here.
These assumptions, in particular (A7), may be weakened, but at the expense of a longer proofs.

Let ` ≡ `(β, σ2,µ,λ) then

∂`

∂β0
=

m∑
i=1

n∑
j=1

{
Yij −B(1)(β0 + β1Xij + µi, λi)

}
, (2)

∂`

∂β1
=

m∑
i=1

n∑
j=1

{
XijYij −XijB

(1)(β0 + β1Xij + µi, λi)
}
, (3)

∂`

∂σ2
= − m

2σ2
+

1

2σ4

m∑
i=1

(µ2
i + λi), (4)

and for 1 ≤ i ≤ m we have

∂`

∂µi
=

n∑
j=1

{
Yij −B(1)(β0 + β1Xij + µi, λi)

}
− µi
σ2
, (5)

and
∂`

∂λi
=

1

2

[
λ−1i − σ−2 −

n∑
j=1

B(2)(β0 + β1Xij + µi, λi)

]
. (6)

First we note some properties of the GVA estimators which hold regardless of whether n or
m diverge. Setting equation (4) to zero and solving we obtain

σ̂2 =
m∑
i=1

µ̂2

i
+ λ̂i

m
.

Subtracting (2) set to zero and the sum of (5) of i from 1 to m set to zero and solving we obtain

m∑
i=1

µ̂
i
= 0.

Finally, setting equation (6) to zero we can deduce that λ̂i satisfies

λ̂i =

[
σ̂−2 +

n∑
j=1

B(2)(β̂
0
+ β̂

1
Xij + µ̂

i
, λ̂i)

]−1
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from which it is obvious that 0 < λ̂i < σ̂2 (since σ̂2 is bounded away from zero and B(2)(µ, λ) is
positive for all µ and λ > 0).

We now consider the properties of λ̂i and B(r)(µ, λ̂i) as n diverges. First, let

γi = inf
X,β0,β1,σ2,µi,λi

B(2)(β0 + β1X + µi, λi).

Then γi is bounded away from zero since X , β0, β1, σ2, µi and λi are bounded, using (A6) and
(A7) respectively, and the fact that B(2)(·, ·) is bounded away from zero for finite arguments.
Hence,

λ̂i ≤
[
σ̂−2 + nγi

]−1
= Op(n

−1), 1 ≤ i ≤ m,

which follows from σ̂2 being positive and bounded (Assumption 6).
Next, using the fact that for all µ, λ and r the derivative of B(r)(µ, λ) with respect to λ

satisfies ∂B(r)(µ, λ)/∂λ = B(r+2)(µ, λ)/2, the Taylor series expansion ofB(r)(µ, λi) around λi = 0
is given by

B(r)(µ, λi) =
∞∑
k=0

B(r+2k)(µ, 0)λki
2kk!

=
∞∑
k=0

b(r+2k)(µ)λki
2kk!

where the right hand side follows from the fact thatB(r)(µ, 0) = b(r)(µ) for all real µ and integers
r. Hence, for all µ and r we have

B(r)(µ, λ̂i) = b(r)(µ) + 1
4
b(r+2)(µ)λ̂i +O(λ̂

2

i ) = b(r)(µ) +Op(n
−1). (7)

Using this equation we can eliminate the λis so we can deduce that

1

mn

m∑
i=1

n∑
j=1

Yij =
1

mn

[
m∑
i=1

n∑
j=1

b(1)(β̂
0
+ β̂

1
Xij + µ̂

i
)

]
+Op(n

−1) (8)

1

mn

m∑
i=1

n∑
j=1

XijYij =
1

mn

[
m∑
i=1

n∑
j=1

Xijb
(1)(β̂

0
+ β̂

1
Xij + µ̂

i
)

]
+Op(n

−1) (9)

σ̂2 =
m∑
i=1

µ̂2

i

m
+Op(n

−1) (10)

and for 1 ≤ i ≤ m we have

1

n

n∑
j=1

Yij =
µ̂
i

nσ̂2 +
1

n

[
n∑
j=1

b(1)(β̂
0
+ β̂

1
Xij + µ̂

i
)

]
+Op(n

−1). (11)

B.2.1 An Analogous Fixed Effects Model

Looking at equations (9) and (11) with β̃0i = β0 + µi we observe that, ignoring Op(n
−1) terms,

these are the estimating equations for a generalized linear model (containing only fixed effects)
where

p(Yij|Xij, Ui) = exp
{
Yij(β̃0i + β̃1Xij)− b(β̃0i + β̃1Xij) + c(Yij)

}
8



conditional on Xij where β̃1 is a slope parameter and β̃0
0i = β0

0 + Ui for 1 ≤ i ≤ m, 1 ≤ j ≤ n.
The log-likelihood for such a model is

`(β̃0, β̃1) =
m∑
i=1

n∑
j=1

{
Yij(β̃0i + β̃1Xij)− b(0)(β̃0i + β̃1Xij)

}
where β̃0 = (β01, . . . , β0m). It is important to note that this is a non-standard context where the
number of parameters P is P = m + 1 and the number of observations N is N = mn so that P
is growing proportionally to N with N diverging.

Asymptotic properties of maximum likelihood estimates for exponential families with di-
verging number of parameters has been considered by Portnoy (1988) and Kakade et al. (2010).
In particular Portnoy (1988) showed that the maximum likelihood estimators are consistent
provided P

N
= m+1

mn
→ 0 which occurs if we let n diverge. Thus, under appropriate conditions,

we can apply standard asymptotic results.

The maximum likelihood estimators ̂̃β0 and ̂̃β1 of β̃0 and β̃1 respectively satisfy
m∑
i=1

n∑
j=1

{
XijYij −Xijb

(1)(
̂̃
β0i +

̂̃
β1Xij)

}
= 0 (12)

and =
n∑
j=1

{
Yij − b(1)(

̂̃
β0i +

̂̃
β1Xij)

}
= 0, 1 ≤ i ≤ m. (13)

The non-zero second derivatives of ` with respect to β̃0 and β̃1 are given by

∂2`

∂β̃2
1

= −
m∑
i=1

n∑
j=1

X2
ijb

(2)(β̃0i + β̃1Xij), (14)

∂2`

∂β̃1∂β̃0i
= −

n∑
j=1

Xijb
(1)(β̃0i + β̃1Xij) (15)

and
∂`

∂β̃0i∂β̃0k
=

{
−
∑n

j=1 b
(2)(β̃0i + β̃1Xij) if i = k,

0 otherwise,
(16)

for 1 ≤ i ≤ m and 1 ≤ k ≤ m. The Fisher information matrix is given by

I(β̃1, β̃0) =



∑m
i=1 ψ2(β̃0i, β̃1) ψ1(β̃01, β̃1) ψ1(β̃02, β̃1) · · · ψ1(β̃0m, β̃1)

ψ1(β̃01, β̃1) ψ0(β̃01, β̃1) 0 · · · 0

ψ1(β̃02, β̃1) 0 ψ0(β̃02, β̃1) · · · 0
...

...
... . . . ...

ψ1(β̃0m, β̃1) 0 · · · · · · ψ0(β̃0m, β̃1)

 .

where β̃0 = (β̃01, . . . , β̃0m). Using the partitioned matrix inversion formula{[
I(β̃1, β̃0)

]−1}1/2

11

=

(
n

m∑
i=1

ψ2(β̃0i, β̃1)−
ψ1(β̃0i, β̃1)

2

ψ0(β̃0i, β̃1)

)−1/2
= O((mn)−1/2)
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provided that
∑m

i=1 ψ2(β̃0i, β̃1) − ψ1(β̃0i, β̃1)
2/ψ0(β̃0i, β̃1) 6= 0. This condition holds provided β̃1

and β̃0i, 1 ≤ i ≤ m are finite which is true by (A6). Similarly,{[
I(β̃1, β̃0)

]−1}1/2

i+1,i+1

= n−1/2

[
ψ0(β̃0i, β̃1)− ψ1(β̃0i,β̃1)

2∑
j 6=i ψ2(β̃0j ,β̃1)−

ψ1(β̃0j ,β̃1)
2

ψ0(β̃0j ,β̃1)

]−1/2
= O(n−1/2)

provided
∑

j 6=i ψ2(β̃0j, β̃1) − ψ1(β̃0j, β̃1)
2/ψ0(β̃0j, β̃1) 6= 0 which holds using similar reasoning.

Hence, we can deduce, using standard results, that

̂̃
β0i = β̃0

0i +Op(m
−1/2), 1 ≤ i ≤ m, and ̂̃

β1 = β̃0
1 +Op((mn)

−1/2) (17)

where β̂0 = (β̂01, . . . , β̂0m), β0
0 = (β0

01, . . . , β
0
0m) are the true values of β0

0 and β̃0
1 is the true value

of β̃1.

B.2.2 Heuristics for the Consistency of Gaussian Variational Approximations

We now give a heuristic argument for the consistency of Gaussian variational approximations
for simple generalized linear mixed models. Equating (11) and (13) we can deduce

1

n

n∑
j=1

[
b(1)(β0 + µi + β1Xij)− b(1)(β̃0i + β̃1Xij)

]
= Op(n

−1). (18)

Now, from the mean value theorem we know that for all z and z′ there exists a z∗ ∈ (z, z′) such
that (b(1)(z) − b(1)(z′))/(z − z′) = b(2)(z∗) due to the fact that b(1) is continuously differentiable.
Rearranging we have

b(1)(z)− b(1)(z′) = b(2)(z∗)(z − z′).
Hence, from (18), we have

1

n

n∑
j=1

b(2)(z∗)
[
(β0 + µi + β1Xij)− (β̃0i + β̃1Xij)

]
= Op(n

−1)

for some z∗ ∈ (β0 + µi + β1Xij, β̃0i + β̃1Xij). Next, since β0, β1, the µis, each of the Xijs, β̃0i and
β̃1 are bounded the value b(2)(z∗) must be bounded away from zero. Hence,

1

n

n∑
j=1

[
(β0 + µi + β1Xij)− (β̃0i + β̃1Xij)

]
= Op(n

−1), 1 ≤ i ≤ m, and

1

mn

m∑
i=1

n∑
j=1

Xij

[
(β0 + µi + β1Xij)− (β̃0i + β̃1Xij)

]
= Op(n

−1)

(19)

due to the fact that the Xijs are bounded. From (19) we have

β̂
0
+ µ̂

i
=
̂̃
β0i +Op(n

−1), 1 ≤ i ≤ m, and β̂
1
=
̂̃
β1 +Op(n

−1).

10



Hence,

β̂
0
+ µ̂

i
= β0

0 + Ui +Op(m
−1/2 + n−1), 1 ≤ i ≤ m, and β̂

1
= β0

1 +Op((mn)
−1/2 + n−1). (20)

Then averaging over the m equations on the left of (20) and using the fact that
∑m

i=1 µ̂i = 0 we
have

β̂
0
= β0

0 +Op(m
−1/2 + n−1).

Hence, using the above with (20) can deduce that Ui = µ̂
i
+Op(n

−1/2) and finally

σ̂2 =
m∑
i=1

µ̂2

i

m
+Op(n

−1) =
m∑
i=1

U2
i

m
+Op(n

−1) = (σ2)0 +Op(m
−1/2 + n−1).

The rates of convergence for β̂
0

and σ̂2 are the same as those in Hall et al. (2011) for the
Poisson case. However, the rates of convergence for β̂

1
are slightly better. This agrees with the

rates of convergence obtained by Hall, Pham, Wand & Wang (2011).
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