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Abstract We study computational issues for support vector classification with
penalised spline kernels. We show that, compared with traditional kernels, compu-
tational times can be drastically reduced in large problems making such problems
feasible for sample sizes as large as ∼106. The optimisation technology known as
interior point methods plays a central role. Penalised spline kernels are also shown to
allow simple incorporation of low-dimensional structure such as additivity. This can
aid both interpretability and performance.

Keywords Additive models · Interior point methods · Low-dimensional structure ·
Low-rank Kernels · Semiparametric regression · Support vector machines

1 Introduction

Support vector classifiers (SVC) are a relatively new family of classifiers that are
enjoying increasing use and success and, according to some accounts (e.g. Breiman
2001), are superseding neural network classifiers. Expositions of support vector clas-
sification include Burges (1998), Cristianini and Shawe-Taylor (2000) and Schölkopf
and Smola (2002). Different members of the family of support vector classifiers are
distinguished by their kernel, a positive definite symmetric function on R

d × R
d

where d is the dimension of the predictor space, and choice of a few parameters
such as the scale of the kernel. A drawback of many of the commonly used kernels
is that fitting algorithms are at least O(n2) where n is the size of the training set
(Simon 2004; Hush et al. 2006). This can hinder their application to large problems,
although remedies based on approximation ideas have been proposed by, for example,
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624 J. T. Ormerod et al.

Smola and Schölkopf (2000), Williams and Seeger (2001) and Schölkopf and Smola
(2002, Chap. 10).

Recently, Pearce and Wand (2006) showed how the design structure of low-rank
semiparametric regression models (e.g. Ruppert et al. 2003) can be used in the support
vector classification context. The basic ingredients are kernels arising from penalised
splines. Such kernels have the following advantages:

• They are low-rank in the sense that their eigen-decomposition involves only K
non-zero eigenvalues where K is the number of spline basis functions and is typi-
cally much smaller than n. An alternative way of describing the low-rank property
is that the Gram matrix factorises into the product of an n × K matrix and its
transpose. The low-rank property lends itself to the use of interior point methods
(Fine and Scheinberg 2002; Schölkopf and Smola 2002; Ferris and Munson 2003).
While interior point methods can be used for any choice of kernel, in the case of
low-rank kernel representations the cost of each iteration is accelerated from O(n3)

to O(nK 2) operations. This can be a drastic improvement upon common support
vector classifiers making problems with n even in the hundreds of thousands fea-
sible. Furthermore, optimality conditions for the problem to be solved are much
more closely satisfied by interior point methods than decomposition type algo-
rithms such as SMO (Schölkopf and Smola 2002, Chap. 10). Implementation of
these algorithms for penalised spline kernels is the central focus of this paper.

• The incorporation of low-dimensional structure such as additivity is relatively
straightforward (Hastie and Tibshirani 1990). Hastie et al. (2001, Sects 2.5 and
12.3.4) demonstrate that classifiers that allow for low-dimensional structure can
perform better than those that do not. Classifiers with low-dimensional structure
are also more interpretable.

• They correspond to a finite-dimensional kernelisation of the original feature space.
This permits easier software management. Further details on this aspect are given
in Sect. 1.

A possible disadvantage of low-rank kernels is that the set of basis functions is
finite and may not be as flexible as a full-rank kernel. However, several studies on
low-rank splines and kernels (e.g. Schoenberg 1968; Wahba 1990; Hastie 1996; Fine
and Scheinberg 2002; Schölkopf and Smola 2002; Wood 2003) have shown that the
difference between low-rank and full-rank performance is often minimal.

Some discussion on the choice of low-rank kernels is in order. Most of the work
in this area is for spline smoothing, rather than general reproducing kernel methods,
but the principles are the same. There are two general approaches to the construc-
tion of low-rank splines. One is to start with a full-rank kernel and then derive
low-rank approximations (e.g. Hastie 1996; Smola and Schölkopf 2000; Williams
and Seeger 2001; Schölkopf and Smola 2002; Wood 2003). The other is to simply
devise a “sensible” low-rank spline algorithm (e.g. Eilers and Marx 1996; Nychka
et al. 1998; Ruppert et al. 2003; Yau et al. 2003). Each have their advantages and
disadvantages, but the latter can have significant computational advantages and are
more readily interpretable (as illustrated in Fig. 1). Details are given in Sect. 1.

The main purpose of this article is to show how interior point methods can be used
to facilitate fast fitting of penalised spline support vector classifiers. The resulting
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Penalised spline classifiers 625

Fig. 1 A penalised spline support vector classifier for the “spam” data. An additive model version is used.
The tick-marks show the predictor values: spam messages along the top, normal messages along the bottom

classifier has linear storage requirements and, storage aside, is able to train massive
training samples in reasonable time. We also describe some novel classification models
based on low-dimensional thin plate splines and additivity structures which can have
interpretability advantages.

The next section gives an overview of penalised spline support vector classi-
fiers. In Sect. 3 we describe their efficient computation via interior point methods.
Section 4 makes some comparisons between penalised spline and common support
vector classifiers in terms of computational time and predictive accuracy. Some conclu-
ding discussion is given in Sect. 5.

2 Penalised spline support vector classifiers

Denote the training data by (xi , yi ), 1 ≤ i ≤ n, were xi ∈ R
d and yi ∈ {−1, 1}.

This corresponds to two-class classification. Multiclass problems can be handled by
application of two-class classification to various class pairs (e.g. Hastie et al. 2001,
Sect. 12.3.7). We seek classifiers f : R

d → R such that a new observation x ∈ R
d

is classified according to sign{ f (x)}. Throughout we assume the “classical” n � d
situation. The reverse situation, sometimes labelled “high dimension, low sample size”,
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has received considerable recent attention, particularly in computational genomics
(e.g. Dudoit et al. 2002). However penalised spline kernels are more suited to classical
classification problems.

Penalised spline classifiers may be based on various full-dimensional or low-
dimensional “models” for f . For illustratory purposes take d = 5 with x = (x1, . . . ,

x5). Possible models for f (x1, x2, x3, x4, x5) are

(A) f (x1, x2, x3, x4, x5) (general quinvariate function)
(B) f1(x1)+ f2(x2)+ f3(x3) (additive function of all five variables)

+ f4(x4)+ f5(x5)

(C) f1(x1)+ f3(x3)+ f4(x4) (additive function of only three variables)
(D) f12(x1, x2)+ f345(x3, x4, x5) (sum of bivariate and trivariate functions)
(E) f1(x1)+ β4 x4 (additive function of two variables, but one linear)

Note that the models (C) and (E) correspond to the situation where some of the pre-
dictors are deemed to have negligible predictive power for classification. Such par-
simonious models are important in certain applications (most notably, data mining)
where identification of the driving factors behind a particular outcome is of intrinsic
interest.

Commonly used kernels in support vector classification software correspond to
the full model (A). Penalised spline kernels can be tailored to any such model. The
kernel arises from the basis functions used to model f . There are several families of
basis functions that can be used to construct penalised spline models (e.g. Ruppert
et al. 2003, Sect. 3.7). Here we will limit discussion to a class of radially symme-
tric basis functions based on thin plate splines (French et al. 2001). Suppose that a
d ′-dimensional function is required where 1 ≤ d ′ ≤ d and let m be an integer such
that 2m > d ′. Then, for x′ ∈ R

d ′
, we consider models of the form

fmd ′(x′) =
p′∑

j=1

β jφ j (x′)+
K ′∑

k=1

ukψk(x′)

where {φ j } is the set of all p′ = (d ′+m−1
d ′

)
d ′-dimensional polynomials in the compo-

nents of x′ with degree less than m and

ψk(x′) ≡ ψk(x′; m, d ′, κκκ) ≡ kth entry of [rmd ′(x′ − κκκ i )
1≤i≤K ′

][rmd ′(κκκ i − κκκ i ′)
1≤i,i ′≤K ′

]−1/2.

Here

rmd ′(x′) =
{ ‖x′‖2m−d ′

d ′ odd
‖x′‖2m−d ′

log ‖x′‖ d ′ even

and κκκ1, . . . , κκκK ′ ∈ R
d ′

is a set of K ′ knots. Full-rank thin plate spline models use
K ′ = n and κκκk = x′

k , 1 ≤ k ≤ n where the x′
k is a d ′-variate sub-vector of xk .

Throughout we use ‖v‖ = √
vTv to denote the length of the vector v.
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One common approach to low-rank spline smoothing (e.g. Ruppert et al. 2003) is to
use K ′ 
 n knots and choose the κκκk to “mimic” the x′

i s. A simple strategy is to draw a
random sample of size K ′ from the x′

i s. Alternatively, one can use deterministic rules
that aim to somehow “fill the space” of the x ′

i s. For one-dimensional fitting (d ′ = 1)
taking κk � (k/K ′)th sample quantile of the unique x ′

i ’s achieves this aim. For higher
dimensions distance-design algorithms such as those used by Nychka and Saltzman
(1998) can be used. Let D be a subset of observed points xi called design points and
C be a subset of observed points xi called candidate points with D ∩ C = φ. Then the
coverage of C by points in D is given by

Ca,b(D) =
(

∑

x∈C
da(x,D)b

)(1/b)
(1)

where

da(x,D) =
(

∑

u∈D
‖x − u‖a

)(1/a)
(2)

and a < 0 and b > 0. Minimising Ca,b fills the space around the data. Minimisa-
tion is conducted by making pairwise swaps of points in D with points in C until
the coverage Ca,b does not decrease. If we choose D to be our set of knots then
this procedure requires at least O(K ′n2) computations and O(nK ′) storage. Note
that as a → −∞ and b → ∞ the coverage Ca,b converges to the minimax space
filling design criteria discussed in Johnson et al. (1990) and with a → −∞ and
b = 1 converges to the criteria used by the CLARA and PAM algorithms of Kaufman
and Rousseeuw (1990). Note that the implementation of CLARA lowers computa-
tional speed by examining subsamples of the data. By doing this CLARA achieves
approximate clustering in O(SK ′2n) computations (assuming S subsamples of size
O(K ′)).

For general penalised spline support vector classification the model for f dictates
the set of spline basis functions which, in turn, dictates the kernel. In the d = 5
example with m = 2 thin plate splines, model (C) leads to

fC (x) = β0 + β1x1 +
K1∑

k=1

u1kψk(x1; 2, 1, κ1)+ β3x3 +
K3∑

k=1

u3kψk(x3; 2, 1, κ3)

+β4x4 +
K4∑

k=1

u4kψk(x4; 2, 1, κ4)

where κ j = (κ
j

1 , . . . , κ
j
K j
) is a set of univariate knots corresponding to x j ( j =

1, 3, 4). The kernel for this model is
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KC (s, t) = 1 + s1t1 + s3t3 + s4t4 +
K1∑

k=1

ψk(s1; 2, 1, κ1)ψk(t1; 2, 1, κ1)

+
K3∑

k=1

ψk(s3; 2, 1, κ3)ψk(t3; 2, 1, κ3)

+
K4∑

k=1

ψk(s4; 2, 1, κ4)ψk(t4; 2, 1, κ4)

for s = (s1, . . . , s5), t = (t1, . . . , t5) ∈ R
5.

Model (D) has spline basis representation

fD(x) = β0 + βββT
12[x1 x2]T +

K12∑

k=1

u12kψk(x1, x2; 2, 2, κκκ12)

+βββT
345[x3 x4 x5]T +

K345∑

k=1

u345kψk(x3, x4, x5; 2, 3, κκκ345)

where κκκ12 denotes a set of knots in the (x1, x2) space and κκκ345 denotes a set of knots
in the (x3, x4, x5) space. The corresponding kernel is

KD(s, t) = 1 + sTt +
K12∑

k=1

ψk(s1, s2; 2, 2, κκκ12)ψk(t1, t2; 2, 2, κκκ12)

+
K345∑

k=1

ψk(s3, s4, s5; 2, 3, κκκ345)ψk(t3, t4, t5; 2, 3, κκκ345).

Once the model, or kernel, is decided upon then there are two more choices to be
made for penalised spline support vector classifiers:

(1) the subset of basis functions that are unpenalised, and
(2) the number of distinct penalisation parameters and their allocation to the penali-

sed basis functions.

In support vector classification it is usual to just leave the intercept β0 unpenalised. In
spline smoothing all of the polynomial terms are usually left unpenalised. We will use
X for the design matrix of unpenalised terms and Z for the design matrix of penalised
terms. The respective coefficients will be denoted by βββ and u. The i th fitted value is
then

f (xi ) = (Xβββ + Zu)i .
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Penalised spline classifiers 629

If only the intercept is unpenalised then X is a column of ones and βββ = β0. Let

Zu =
L∑

�=1

Z�u�

for some partition Z1, . . . ,ZL of Z such that each u� has its own penalty parameter
λ�. The “natural” choice for the Z� is that for which each predictor variable has its own
smoothing parameters. So for model (D) with only β0 being unpenalised we would
have L = 2,

Z1 = [x1i x2i ψk(x1i , x2i ; 2, 2, κ12)
1≤k≤K12

]1≤i≤n

and

Z2 = [x3i x4i x5i ψk(x3i , x4i , x5i ; 2, 3, κ345)
1≤k≤K345

]1≤i≤n .

The penalised spline support vector classifier minimises

n∑

i=1

{1 − yi (Xβββ + Zu)i }+ +
L∑

�=1

λ�‖u�‖2.

This is equivalent to the constrained optimisation problem

min
βββ,uuu

L∑

�=1

λ�‖u�‖2 +
n∑

i=1

ξi

subject to ξi ≥ 0, yi (Xβββ + Zu)i ≥ 1 − ξi for all 1 ≤ i ≤ n. (3)

This problem, in turn, leads to the quadratic programming problem

min
ααα
(−1Tααα + 1

2ααα
TDααα)

subject to 0 ≤ αi ≤ 1, for all 1 ≤ i ≤ n, and XT(ααα � y) = 0 (4)

where

D = 1
2 (yyT)� (ZΛΛΛ−1ZT) and ΛΛΛ = diag(λ111, . . . , λL1L).

and 1� is a vector of ones of length equal to the length of u�. Here A � B denotes the
element-wise product of equal-sized matrices A and B. See Pearce and Wand (2006)
for details. Since the Gram matrix admits the factorisation

1
2 ZΛΛΛ−1ZT = Z̃Z̃T where Z̃ = Z(2ΛΛΛ)−1/2
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630 J. T. Ormerod et al.

the quadratic programming problem becomes

min
ααα

[
−1Tααα + 1

2ααα
T

{
(yyT)� (Z̃Z̃T)

}
ααα
]

subject to 0 ≤ αi ≤ 1, for all 1 ≤ i ≤ n, and XT(ααα � y) = 0. (5)

The “bottom line” of this section is that penalised spline support vector classifiers are
just ordinary hyperplane support vector classifiers with the original features xi ∈ R

d

replaced by z̃i ∈ R
K , 1 ≤ i ≤ n, corresponding to the rows of Z̃ (with K denoting

the number of columns in Z̃). This makes software management relatively simple
since only y, X and the n × K matrix Z̃ need to be passed to a quadratic programming
routine. Software for general support vector classifiers either needs to deal with O(n2)

storage of the Gram matrix or evaluate the kernel inside an algorithm such as sequential
minimal optimisation (SMO) (e.g. Cristianini and Shawe-Taylor 2000). An even bigger
payoff is the fact that the Gram matrix Z̃Z̃T has rank K . The next section summarises
an efficient algorithm for solving the problem when this is the case.

3 Interior point methods

Interior point methods (IPM) are one of the most important developments in optimi-
sation in the last two decades. In this section, we provide the minimal information
needed to code a reasonably efficient interior point method for support vector classifi-
cation. More efficient methods exist, but they involve extra complexity which obscure
the main ideas. Extensive literature exists on interior point methods. For an introduc-
tion the reader is referred to Wright (1997), Nocedal and Wright (1999) and Boyd
and Vandenberghe (2004). For interior point methods in the context of support vector
machines the reader is referred to Fine and Scheinberg (2002), Schölkopf and Smola
(2002), Ferris and Munson (2003) and Vandenberghe and Comanor (2003).

3.1 Description

Interior point methods have been developed to solve most convex programming pro-
blems (see Boyd and Vandenberghe 2004). However, unless special structure is avai-
lable, these methods are restrictive when the dimension of the optimisation problem
becomes large.

Our goal is to solve the dual optimisation problem (5). Its corresponding primal
problem may be written

min
βββ,uuu,ξξξ,ζζζ

‖u‖2 +
n∑

i=1

ξi

subject to ξi , ζi ≥ 0, yi (Xβββ + Z̃u)i + ξi − ζi = 1, for all 1 ≤ i ≤ n (6)
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where ξξξ ≡ (ξ1, . . . , ξn) and ζζζ ≡ (ζ1, . . . , ζn). Note that this problem corresponds to
(3) but with Z replaced by Z̃ and the introduction of slack variables ζi , 1 ≤ i ≤ n. For
compactness of notation we define

A ≡ XTdiag(y), and V ≡ Z̃Tdiag(y).

IPMs start with an initial guess and iteratively find better solutions until some conver-
gence criteria is reached. They focus on a system of quadratic equations made up of the
primal constraints, dual constrains and the perturbed complementary slackness condi-
tions induced by a log barrier function (see Boyd and Vandenberghe 2004). These
conditions are

VTVααα + ATβββ + ξξξ − ζζζ = 1 (Primal Feasibility)
Aααα = 1 (Dual Feasibility)

(αi − 1)ξi = t (Perturbed Complementary Slackness)
αiζi = t (Perturbed Complementary Slackness)

(7)

where t is some positive constant. Let the solution of such a system of equations be
α̂αα, β̂ββ, ξ̂ξξ and ζ̂ζζ and let P∗ denote the optimal value of the primal objective (6). Then it
can be shown (Boyd and Vandenberghe 2004) that

1
2 α̂αα

TVTVα̂αα − 1Tα̂αα − P∗ ≤ 2nt.

Hence reduction of t leads to solutions of the original and the perturbed problems
becoming closer.

Let ααα( j), βββ( j), ζζζ ( j), ξξξ ( j) denote the values of ααα, βββ, ζζζ and ξξξ after the j th iteration
of the interior point method. A “cold” initial point is calculated using

α
(0)
i = ε, βββ(0) = 0, ξ (0)i = max(ε, si ) and ζ

(0)
i = max(ε, ξ (0)i − si )

where s = 1 − VTVααα − ATβββ and ε is a small constant, say ε = 10−2. This is a good
starting point when the number of support vectors is small.

The system of equations (7) cannot be easily solved. Instead, in the spirit of
Newton’s method, we linearise around our current point by substituting

ααα( j) +∆ααα, βββ( j) +∆βββ, ξξξ ( j) +∆ξ and ζζζ ( j) +∆ζζζ

into (7) and “solve” the resulting equations, in this order, to get the search direction
vector (∆ααα,∆βββ,∆ξξξ,∆ζζζ ):

∆βββ = {
AT(VTV + D)−1A

}−1 (
ATr5 − r2

)
,

∆ααα = r5 − (
VTV + D

)−1
A∆βββ,

∆ζi = r3i − ζ
( j)
i ∆αi/α

( j)
i ,

∆ξi = r4i + ξ
( j)
i ∆αi/(1 − α

( j)
i )

(8)
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where

r1 = 1 − VTVααα( j) − ATβββ( j) − ξ ( j) + ζ ( j),

r2 = −Aααα( j),

r3i = (t −∆αi∆ζi )/α
( j)
i − ζ

( j)
i ,

r4i = (t +∆αi∆ξi )/(1 − α
( j)
i )− ξ

( j)
i ,

r5 = (VTV + D)−1(r1 + r3 − r4)

(9)

and

D = diag

{
ξ ( j)/(1 − α

( j)
i )+ ζ

( j)
i /α

( j)
i

1≤i≤n

}
.

Newton’s method substitutes

∆ααα = ∆βββ = ∆ξξξ = ∆ζζζ = 0

into (9) for a given value of t and then uses the values in (9) to calculate (8). However
a similar method, the predictor–corrector method, usually accelerates the convergence
of the algorithm (Mehrotra 1992). In order to calculate the Newton predictor–corrector
directions ∆ααα, ∆βββ, ∆ξ and ∆ζ we

1. find r1, . . . , r4 by substituting ααα( j), βββ( j), ξ ( j), ζ ( j), t = 0, ∆ααα = 0, ∆βββ = 0,
∆ξ = 0 and ∆ζ = 0 into (9) and then calculate (8); and

2. recalculate r3 and r4 by substituting ααα( j), βββ( j), ξ ( j), ζ ( j) and the values of ∆ααα,
∆βββ, ∆ξ and ∆ζ from Step 1 into (9) and then recalculate (8).

Once we have a search direction we take the maximum step size τ ∈ (0, 1) such that
0 ≤ ααα( j) + τ∆ααα ≤ 1, ξ ( j) + τ∆ξ ≥ 0 and ζ ( j) + τ∆ζ ≥ 0. This method of finding
the step size is called simple dampening. Other step lengths exist (see Mészáros 1999).
Once the step size τ is found we update our values using

ααα( j+1) = ααα( j) + (1 − ε)τ∆ααα

βββ( j+1) = βββ( j) + (1 − ε)τ∆βββ

ξ( j+1) = ξξξ ( j) + (1 − ε)τ∆ξξξ

ζ ( j+1) = ζζζ ( j) + (1 − ε)τ∆ζζζ .

(10)

The factor (1 − ε) is included to ensure numerical feasibility. At each iteration we
reduce t using

t = (ααα( j)T ζ ( j)+(1−ααα( j))Tξ (i))(1−τ+ε)
n(10+τ)2 . (11)

We stop when

ααα( j)T ζ ( j) + (1 − ααα( j))Tξ ( j)

1
2ααα

( j)T VTVααα( j) + 1Tααα( j) + 1Tξ ( j)
≤ δ (12)

for some tolerance δ > 0.

123



Penalised spline classifiers 633

3.2 Iteration cost

For support vector machines it is common to have K , d 
 n so we can effectively
ignore costs that do not involve n.

The main cost in IPMs for support vector classification is solving systems of
the form (VTVa + D) = b. Forming VTV explicitly is expensive both computa-
tionally and in terms of storage. If we form VTV explicitly then factorising VTV + D
requires O(n3) operations and O(n2) storage. Much cheaper alternatives include
use of the Sherman–Morrison–Woodbury formula and the product form Cholesky
factorisation. Each require O(nK 2) operations and O(nK ) storage. The Sherman–
Morrison–Woodbury formula is

(VTV + D)−1 = D−1 − D−1VT(I + VD−1VT)−1VD−1. (13)

Note that I + VD−1VT is generally positive definite and can be factorised efficiently
using Cholesky factorisation in O(K 3) operations. However the main cost in calcu-
lating (13) is calculating VD−1VT which requires O(nK 2) operations. The product
form Cholesky factorisation is more numerically stable but its description is more
involved. Details on this approach are given in Fine and Scheinberg (2002).

3.3 Number of iterations

The overall complexity of the algorithm greatly depends on the number of iterations
before convergence criteria are satisfied. The number of iterations depends on the
choice of starting point, the method used to find the search direction, the step-size used
to find the next iterate and how the parameter t is reduced. It can be shown that a naïvely
coded IPM with a Newton predictor–corrector step direction gives a theoretical bound
of O(n) iterations for convergence (Boyd and Vandenberghe 2004). State-of-the-art
algorithms have been shown to have a worst case complexity of O(

√
n). However,

extensive numerical experience shows that the number of iterations for IPMs is almost
constant. See, for example, Fine and Scheinberg (2002).

4 Comparisons

Most of this section deals with additive functions of all variables as described in
model (B). For these models we present some time comparisons based on different
implementations. We compare the misclassification rates arising from different kernels
for a number of well-known data sets. Lastly, we present some preliminary results on
extensions to bivariate models.

4.1 Kernels and settings

We compare the performance of three different kernels. These are
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1. the linear kernel (referred to as linear)

K(s, t) = sT t;

2. the radial basis function kernel (referred to as RBF)

K(s, t) = exp(−γ ‖s − t‖2)

for some γ > 0; and
3. the truncated lines penalised spline kernel (referred to as PSVC)

K(s, t) =
d∑

j=1

K j∑

k=1

(s j − κ jk)+(t j − κ jk)+,

where, for 1 ≤ k ≤ K j , κ jk is the kth knot for the j th predictor.

Note that the linear and truncated lines penalised spline kernel can be seen as
different cases of model (B) whereas the RBF kernel is an example of models of type
(A). Having decided upon the kernels, we make the following choices for the subset
of basis functions and penalisation parameters.

• K j = 20 knots for each predictor, with κ jk equal to the
(

k+1
K j +2

)
th sample quantile

of the unique predictor values.
• Linear and intercept terms are unpenalised for the penalised spline so that

X = [1 xi1 . . . xid ]1≤i≤n

• The intercept term is unpenalised for the radial basis function and linear kernels.
• We use γ = 1/d as the default value in the svm() function of the R package

e1071.
• Choices for the smoothing parameters λ are given separately in the following

sections.

Note that the svm() function in R is restricted to the case where only the intercept
term is unpenalised. For the more general case one may need to resort to standard
convex quadratic programming software such as that provided by the quadprog
package in R.

In the computations described in the next sections, we use the standardised or scaled
data.

4.2 Timing comparisons

We compare the computation times of two different MATLAB implementations of the
interior point method described in Sect. 3 with the R package quadprog (Turlach
and Weingessel 2006) which has a Fortran back-end for penalised spline support
vector classifiers using the PSVC kernel described in Sect. 4.1. The two different
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Table 1 Average times in seconds for the four dimensional “skin of the orange” example using the two
MATLAB implementations of the interior point method FULL and SMW and direct quadratic programming
(QP) over 50 trials

QP FULL SMW QP
SMW

FULL
SMW

n = 200 0.49 (0.0007) 0.53 (0.0004) 0.05 (0.0007) 9.80 10.06

n = 1,000 68.51 (0.1401) 4.95 (0.0145) 0.50 (0.0016) 137.02 9.90

n = 5,000 9210.57 (4.9080) 511.76 (0.1773) 3.98 (0.0027) 2314.21 128.58

Standard errors are given in brackets

MATLAB implementations differ in the method used to “invert” VTV + D. The first
implementation “inverts” VTV+D usingMATLAB’s inbuilt \ (backslash) operator. We
refer to this method as FULL. The second implementation “inverts” VTV + D using
the Sherman–Morrison–Woodbury’s formula (13). We refer to this implementation as
SMW. The MATLAB implementations terminate when the duality gap is smaller than
10−8. The R package quadprog is an active-set method and so cannot be compared
in terms of inverting the VTV + D matrix. The quadprog package stops when no
constraints are violated in the active set.

We base the time comparisons on the four dimensional “skin of the orange” set-
ting described in Sect. 12.3.4 of Hastie et al. (2001). The “skin of the orange” data
is generated by simulating two classes of points. Each data point from the first class
is simulated from four independent standard normally distributed random variables
X1, X2, X3, X4 while each data point from the second class is simulated from four
independent standard normally distributed random variables X1, X2, X3, X4 condi-
tioned on 9 ≤ ∑4

i=1 X2
i ≤ 16.

Of particular interest is the effect of the sample size on computing times. For this
reason we use sample sizes n = 200, 1, 000 and 5, 000. In all simulations other than
the case of n = 5, 000 for R’s QP method, we used 50 runs. For the largest sample size
with R the times are based on 10 runs only. The mean times and standard errors are
given in Table 1 . We choose the smoothing parameters λ1, . . . , λd for the penalised
spline SVC so that each function has approximately 6 degrees of freedom.

The computations were performed on dual Opteron 2.0 GHz CPUs with 4 GB RAM
andMATLAB version 7.01 andR version 2.0.0. In addition to the mean times in seconds
and their standard errors, we also show ratios of times with the SMW implementations
in the last two columns of Table 1 . The ratios provide further insight, because they are
less dependent on changes in the computing environment. Nevertheless, the average
times themselves give a real life aspect to the problem in that they indicate how
long a user would have to wait for classifications in 2007 using a typical computing
environment.

The comparisons in Table 1 show that huge time and storage savings can be obtained
from using custom built convex quadratic programming solvers for low-rank kernels.
In particular it has been possible to solve support vector classification problems with
more than 106 training points, a task which would be practically impossible for general
convex quadratic programming problems.
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Table 2 Average (standard error) misclassification rates based on tenfold cross-validation using a Linear,
RBF and PSVC

Data n d Linear RBF PSVC

Balance 625 4 4.76 (0.13) 1.75 (0.08) 0.63 (0.04)

Bupa 345 6 30.29 (0.50) 29.43 (0.46) 26.00 (0.40)

Checker 1,000 2 48.60 (0.23) 3.10 (0.04) 39.10 (0.13)

Cmc 1,473 10 31.44 (0.09) 28.95 (0.08) 27.26 (0.07)

Haberman 306 3 26.11 (0.50) 26.42 (0.49) 24.18 (0.43)

Pid 768 9 22.03 (0.17) 23.18 (0.19) 22.67 (0.19)

Skin200 200 4 44.50 (0.42) 4.50 (0.35) 5.00 (0.29)

Skin1,000 1,000 4 48.20 (0.30) 4.20 (0.05) 4.00 (0.05)

Votes 435 16 4.09 (0.18) 3.41 (0.09) 3.86 (0.17)

Wbcd 569 31 2.89 (0.08) 2.90 (0.07) 2.92 (0.04)

4.3 Performance comparisons

We return to the three kernels listed in Sect 4.1 and compare their performance for a
number of well known real data sets which are available on the UCI Machine Learning
Repository (Blake and Merz 1998). In addition, we have included the two dimensional
Checker data which can be obtained on-line (Ho and Kleinberg 1996), and the Skin
(“skin of the orange”) data sets of Hastie et al. (2001).

As all data sets have labels, classification performance of the three kernels is measu-
red in terms of the misclassification rate. In our calculations we choose the smoothing
(or “cost”) parameter for the linear and radial basis SVCs via tenfold cross-validation
using λi = λ for all i and λ being chosen from 50 logarithmically equally spaced
points between 2−15 and 215.

Our results are reported in Table 2 . We calculate the mean misclassification rate over
50 runs based on tenfold cross-validation. We then determine the minimum over all 50
values of the smoothing parameter. This minimum value is our quoted misclassification
rate. Standard errors at the minimum are given in brackets. The table lists the data sets
together with their sample size and dimension or number of features, so the quantity
d in the table refers to the dimension and does not count the labels as a dimension.

We also calculated average misclassification rates based on 50 runs with random
25 and 40% subsets of the data held back for testing. However these results were fairly
similar to those given in Table 2 and so are not included.

Table 2 shows that the classification performance of PSVC, the additive penalised
spline SVC, is comparable with (or better than) that of the RBF, the radial basis SVC,
in all cases other than the Checker data set.

In addition, as previously stated, the use of the truncated lines penalised spline (and
similar) kernels are inherently more interpretable. Figure 1 provides an illustration
of a penalised spline support vector machine classification. The model is an additive
function of 16 predictors of spam versus ordinary email, with spam messages coded
as +1 and ordinary messages coded as −1. See Hastie et al. (2001) for a description of
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the these “spam” data. Each panel shows the slice of the classification surface for the
labelled predictor, with all other predictors set to their medians. Assuming the model in
some way reflects reality, it appears, for example, that frequency of the word “free” has
a monotonic effect on classification while frequency of exclamation marks (ch!) has a
non-monotonic effect. Thus increasing the word “free” in an email increases the chance
the email will be classified as spam whereas the chances increase or decrease depending
on how many exclamation marks are already in the email. In some classification
contexts, the type of relationship may be important for interpretation. Note that Fig. 1
is visually similar to Fig. 9.1 in Hastie et al. (2001) with differences occurring mainly
where data are sparse.

4.4 Extension to bivariate models

In the previous section, we compared misclassification rates for a number of different
kernels. In all cases (apart from the Checker example) PSVC performed at least as well
as the other kernel methods and often better. For this reason we focus on penalised
spline kernels and consider bivariate models such as

f p(1)p(2)(x p(1), x p(2))+ f p(3)p(4)(x p(3), x p(4))+ f p(5)p(6)(x p(5), x p(6)), (14)

where (p(1), . . . , p(d)) is a permutation of (1, . . . , d). This model is most similar to
model (D), but is restricted to bivariate functions.

The design matrix consists of the constant term only, so that X is a vector of ones,
and the Z matrix is extended to contain linear, mixed and quadratic terms. We consider
three different forms for Z:

• Z1 contains mixed terms x p( j)x p( j+1) only;
• Z2 contains linear terms and mixed terms;
• Z3 contains linear, quadratic and mixed terms.

More specifically, we consider the entries in the Z matrix which arise from the
linear, mixed and quadratic contributions. Let Zlin denote the design matrix of the
linear terms. The i th row of Zlin consists of the terms

(xi j − κ jk)+ for 1 ≤ j ≤ d, 1 ≤ k ≤ K j . (15)

Similarly let Zquad denote the design matrix of the quadratic terms. The i th row of Zquad

consists of the terms

(xi j − κ jk)+2 for 1 ≤ j ≤ d, 1 ≤ k ≤ K j . (16)

Finally, terms of the form

(xip( j) − κp( j)k)+ × (xip( j+1) − κp( j+1)1)+, . . . ,
(xip( j) − κp( j)k)+ × (xip( j+1) − κp( j+1)K p( j+1) )+

(17)
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Table 3 Mean misclassification rates based on tenfold cross-validation with bivariate PSVC

Data n d 1-d Results 2-d Results Selected Model

Iris 150 4 3.33 (0.29) 1.33 (0.23) Z1

Checker 1,000 2 39.1 (0.13) 26.3 (0.18) Z3

Bupa 345 6 26.0 (0.40) 23.7 (0.49) Z1

Standard errors are given in brackets

for p( j) = 1, 3, . . . d − 1, 1 ≤ k ≤ K p( j) contribute to the i th row of the design
matrix Zmix of the mixed terms. Here p( j) and p( j + 1) denote consecutive terms of
the permutation in (14). Using this notation, the three different Z matrices are

Z1 = Zmix

Z2 = [Zlin Zmix]
Z3 = [Zlin Zquad Zmix]. (18)

In analogy with the one-dimensional results we calculate the best misclassification
rate over a range ofλvalues (same as in the univariate case) via tenfold cross-validation.
We apply these models to three different data sets: the well known Iris data set; the
Checker data set; and the Bupa liver data set. We have not used the four dimensional
Balance data set since the univariate PSVC results show a very low misclassification
rate, and big improvements are therefore not expected.

The Iris data have four variables and three classes. Here we label the first and
second species as one class and compare this combined class to the third species. The
Checker data are bivariate, so no selection of combinations of variables is necessary.

The Bupa liver data have six dimensions. We calculate all 15 combinations of
pairwise models with Z1. These results vary greatly, and some combinations do not
perform better than the additive model. As a second step we use models Z2 and Z3. The
lowest misclassification rate is again lower than for the univariate case, and comparable
to the best misclassification rate obtained with model Z1.

Table 3 displays the bivariate results. As in the univariate case the misclassification
rate is the minimum of the mean misclassification rates, where the minimum is taken
over the values of the smoothing parameter λ. The means are based on tenfold cross
validation, and the corresponding standard errors are given in brackets. The table also
includes the one dimensional misclassifications obtained with PSVC. For the Checker
example and for the Bupa liver data we have made use of the values given in Table 2 .

These preliminary results demonstrate that the misclassification rate can be reduced
considerably when employing bivariate models.

5 Discussion

Support vector classifiers are increasingly used in classification problems. Pearce and
Wand (2006) considered low-rank semiparametric regression models in the context
of support vector classification such as kernels which arise from penalised splines. In
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this paper we examined computation issues relating to such penalised spline kernels,
with emphasis on efficient interior point methods for support vector classification.
Our comparison of different implementations showed that large savings in time and
storage can be made when using custom built convex quadratic programming solvers
for low-rank kernels.

For real data sets and univariate models we compared a number of different kernels
and demonstrated that penalised spline kernels can perform as well as radial basis
kernels. In addition, the penalised spline kernels enjoy an easy interpretability. Our
preliminary results with bivariate models and penalised spline kernels show that further
improvements in classification rates can be obtained when more complex models are
considered.

Acknowledgments Partial support has been provided by a University of New South Wales Faculty Research
Grant.

Appendix: R Code

This script demonstrates how to fit the spam dataset using a truncated linear spline
kernel with the R package LowRankQP. Code for an interpretable plot (Fig. 1) is also
provided.

Load the data and normalise each variable.

library(LowRankQP); library(ElemStatLearn); data(spam)
n <- nrow(spam)
use.vars <- c(5,6,7,8,16,17,25,26,27,37,45,46,52,53,56,57)
spam <- spam[sample(1:n),c(use.vars,ncol(spam))]
d <- ncol(spam) - 1
mu <- mean(spam[,1:d])
sigma <- sd(spam[,1:d],na.rm=TRUE)
x <- (spam[,1:d] - mu)/sigma
y <- 2*as.matrix((spam[,d+1]=="spam")+0) - 1

Create an R function to calculate the basis functions to be used.

CalculateBasis <- function(x,knots)
{

X <- as.matrix(cbind(rep(1,nrow(x)),x))
nKnots <- 0
for (i in 1:ncol(x))

nKnots <- nKnots + length(knots[[i]])
Z <- matrix(0,nrow(x),nKnots)
s <- 1
for (i in 1:d)
{

Zi <- outer(x[,i],knots[[i]],"-")
Z[,s:(s+length(knots[[i]])-1)] <- Zi*(Zi>0)
s <- s + length(knots[[i]])

}
list(X=X,Z=Z)

}

Set up the inputs for the quadratic program & solve using LowRankQP.
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lambda <- 0.4279488; nKnots <- 20; knots <- c()
for (i in 1:d)

knots[[i]] <- quantile(unique(x[,i]),
seq(0,1,length=nKnots+2)[-c(1,nKnots+2)])

res1 <- CalculateBasis(x,knots)
A <- res1$X*as.vector(y)
V <- res1$Z*as.vector(y)/sqrt(2*lambda)
res2 <- LowRankQP(V,rep(-1,n),t(A),rep(0,ncol(A)),rep(1,n),

method="SMW",verbose=TRUE,niter=200)
alpha <- t(V)%*%res2$alpha
beta <- res2$beta

Set up labels and corresponding horizontal ranges for each variable.

data.labels <- c( "our","over","remove","internet","free",
"business","hp","hpl","george","1999","re","edu","ch!",
"ch$","CAPMAX","CAPTOT")

data.ran <- c()
data.ran[[1]]<-c(0,6);data.ran[[2]]<-c(0,4);data.ran[[3]]<-c(0,4);
data.ran[[4]]<-c(0,6);data.ran[[5]]<-c(0,10);data.ran[[6]]<-c(0,4);
data.ran[[7]]<-c(0,10);data.ran[[8]]<-c(0,10);data.ran[[9]] <-c(0,4);
data.ran[[10]]<-c(0,4);data.ran[[11]]<-c(0,10);data.ran[[12]]<-c(0,8);
data.ran[[13]]<-c(0,10);data.ran[[14]]<-c(0,4);
data.ran[[15]]<-c(0,1000);data.ran[[16]]<-c(0,4000)

Plot slices of the classification surface for different variables as described in Sect. 4.3.

n.plot <- 300
median.data <- matrix(1,n.plot,1)%*%median(x)
par(mfrow=c(4,4))
for (i in 1:16)
{

plot.x <- seq((data.ran[[i]][1]-mu[i])/sigma[i],
(data.ran[[i]][2]-mu[i])/sigma[i],length=n.plot)

plot.data <- median.data
plot.data[,i] <- plot.x
plot.x <- sigma[i]*plot.x+mu[i]
res3 <-CalculateBasis(plot.data,knots)
plot.f<-res3$X%*%beta+(res3$Z/sqrt(2*lambda))%*%alpha
plot(c(data.ran[[i]][1],data.ran[[i]][2]),

c(-7.5,7.5),type="n",bty="l",xlab="",
ylab="",ylim=c(-5,5),main=data.labels[i])

lines(plot.x,plot.f,lwd=2,col="black")
lines(plot.x,matrix(0,n.plot,1),lwd=0.5,col="black")

}
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