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 SUMMARY. A method for fitting regression models to data that exhibit spatial correlation and heteroskedas-
 ticity is proposed. It is well known that ignoring a nonconstant variance does not bias least-squares estimates
 of regression parameters; thus, data analysts are easily lead to the false belief that moderate heteroskedas-
 ticity can generally be ignored. Unfortunately, ignoring nonconstant variance when fitting variograms can
 seriously bias estimated correlation functions. By modeling heteroskedasticity and standardizing by esti-
 mated standard deviations, our approach eliminates this bias in the correlations. A combination of para-
 metric and nonparametric regression techniques is used to iteratively estimate the various components of
 the model. The approach is demonstrated on a large data set of predicted nitrogen runoff from agricultural
 lands in the Midwest and Northern Plains regions of the U.S.A. For this data set, the model comprises
 three main components: (1) the mean function, which includes farming practice variables, local soil and
 climate characteristics, and the nitrogen application treatment, is assumed to be linear in the parameters
 and is fitted by generalized least squares; (2) the variance function, which contains a local and a spatial
 component whose shapes are left unspecified, is estimated by local linear regression; and (3) the spatial
 correlation function is estimated by fitting a parametric variogram model to the standardized residuals,
 with the standardization adjusting the variogram for the presence of heteroskedasticity. The fitting of these
 three components is iterated until convergence. The model provides an improved fit to the data compared
 with a previous model that ignored the heteroskedasticity and the spatial correlation.

 KEY WORDS: Heteroskedasticity; Local linear estimation; Metamodel; Runoff modeling; Spatial correlation.

 1. Introduction

 For many practical problems, the degree to which components

 of the statistical model can be specified in a parametric form

 varies dramatically. When the model is misspecified, the re-

 sulting model fit can be biased, and the possibility for making

 wrong inferences exists. However, when part of the model is

 amenable to parametric fitting, it is useful to do this to have

 a more analytically tractable model and to be able to use

 traditional inference techniques. Even in the most common

 form of nonparametric regression where the mean function is

 left unspecified, it is common to assume that the observations

 are uncorrelated, which can be viewed as a "parametric" as-

 sumption on the distribution of the errors. Violation of that

 assumption has a serious effect on the optimal bandwidth for

 estimating that mean function (e.g., Opsomer, 1997).

 Most models for spatial data assume a stationary process

 that implies a constant variance. When the data are het-

 eroskedastic, naively assuming a constant variance when fit-

 ting a variogram can lead to badly biased estimates of the cor-

 relation function. To appreciate this problem, one need only

 consider that the variance of the difference between the two

 observations depends not only on their correlation but also on

 their individual variances. In our experience, heteroskedas-

 ticity is c6mmon in spatial data but rarely can be fit by a

 parametric model.

 In this article, we consider an application where it appears

 reasonable to accept a (roughly) linear relationship between

 dependent and independent variables and where the observa-

 tions clearly display spatial dependence, but where the shape

 of the spatial variance cannot be specified a priori. The pro-

 posed approach blends elements of parametric and nonpara-

 metric fitting and is applicable to a wide range of problems,

 particularly those that entail spatially distributed observa-

 tions.

 We begin by describing the application that motivated this

 research. Economists at the Center for Agricultural and Ru-

 ral Development at Iowa State University (CARD) are de-

 veloping models to evaluate the impact of federal and state

 agricultural policies on the nitrogen water pollution in the

 Midwest and Northern Plains of the U.S.A. (Wu, Lakshmi-
 narayan, and Babcock, 1996), at both the regional and lo-

 704
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 Table 1

 Model variables

 YN03 Nitrogen runoff (predicted by EPIC-WQ)
 NRATE Nitrogen application rate

 Tillage, Conservation, and
 Irrigation Practice Dummies

 (Reference: Conventional Tillage)

 DRT Reduced tillage
 DSTRIP Strip-cropping
 DNT No till
 DTERRA Terracing
 DCONTR Contouring
 DIRTYP Irrigation

 Crop Rotation Dummies

 (Reference: Continuous Alfalfa)

 DROT1 Continuous corn
 DROT8 Soybeans-soybeans-corn
 DROT2 Continuous soybeans
 DROT9 Wheat-fallow
 DROT3 Continuous wheat
 DROT10 Wheat-sorghun-fallow
 DROT4 Continuous sorghum
 DROT11 Wheat-soybeans
 DROT5 Corn-soybeans
 DROT12 Wheat-sorghum
 DROT6 Corn-corn-soybeans
 DROT14 Corn-corn-3 years alfalfa
 DROT7 Corn-soybeans-wheat

 Rainfall and Soil Properties

 RAIN Rainfall (mm)
 BD Bulk density
 SLOPE Field slope
 PH Soil pH
 CLAY Clay percentage
 PERM Soil permeability
 OM Organic matter (%)
 AWC Available water capacity

 Hydrology Dummies (Reference: DHYGA)

 DHYGB Hydrologic group B
 DHYGD Hydrologic group D
 DHYGC Hydrologic group C

 Location of Closest Weather Station
 LAT Latitude

 LONG Longitude

 cal levels. Local prediction is achieved by using the 128,591
 National Resources Inventory (NRI) points in the region of
 interest as the basis for the evaluation of pollution impact:

 The NRI database provides measurements on many land-use

 and soil variables of interest, as well as sampling weights that
 allow statistically valid area predictions based on the point

 predictions (Nusser and Goebel, 1997).
 Nitrogen pollution occurs via two primary pathways: by

 nitrogen runoff into surface waters and by leaching through

 the soil into the groundwater. In the current article, we will

 focus on the prediction of nitrogen runoff. Table 1 shows the

 variables used in the model. They are further described in Wu

 et al. (1996). A map of the study region containing the loca-
 tions of weather stations is given in Figure 1. The estimated

 variance function also displayed there will be discussed later.

 0 Local variance J * ~~~~~~~0.276 - 2.826
 i __ 2.826 -5.375
 a ~ ~ ~ . o 5.375 -7.924

 S * * h h ~~~~~~7.924 - 10.474
 \ * . * . ( ( ~~~~10.474 -13.023

 Figure 1. Estimate of the variance function v, (.) at the
 weather station locations.

 Nitrogen runoff from nonpoint sources such as agricultural

 practices is typically unobservable, especially at the scale of

 interest in this study. The Water Quality and Erosion Produc-

 tivity Impact Calculator (EPIC-WQ; see Sharpley and

 Williams, 1990), a widely used deterministic biogeophysical

 process model, provides, at least conceptually, a convenient

 tool for predicting the nitrogen runoff at the NRI points. Run-

 ning the model for all NRI points would be computation in-

 tensive, and any change in any of the input variables would

 require rerunning the EPIC-WQ model. It was therefore de-

 cided to estimate a statistical "metamodel" on a representa-

 tive subset of 11,403 data points and to use this metamodel

 in place of EPIC-WQ to predict the nitrogen runoff at the

 remaining observation points. Another advantage of this ap-

 proach is the estimation of coefficients and the accompanying

 confidence intervals for the covariate effects, which provide

 additional insights into the nature of the effect of agricultural

 practices (represented by NRATE and the dummy variables

 in Table 1) on nitrogen pollution.

 The original approach of Wu et al. (1996) was to fit the
 metamodel by ordinary least squares (OLS) after transform-

 ing the dependent variable and adding a limited number of

 interaction terms. The model was

 (YN03)1/3-5 - a + Z13z1 + NRATE * Z2/Z2 + X/X
 + i.i.d. errors, (1)

 where ZI contains the values for the covariates from Table

 1 except the weather station location, Z2 is the same as ZI
 except for the removal of the covariate NRATE, and X =
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 (LAT, LONG), the location of the nearest weather station. We

 will let Z = [ZI NRATE * Z2 X]. For simplicity, we refer to
 Z as the covariates for this model and let /3 = [p3T ZT )3T]T
 The location and interaction terms were included to improve

 the fit of the model, and the transformation was selected to

 remove some of the observed departures from usual assump-

 tions that errors are homoskedastic and normally distributed.

 Nevertheless, the residuals still exhibited severe heteroskedas-

 ticity, as well as spatial correlation. As noted in Carroll and

 Ruppert (1988), transformations of the dependent variable

 only remove heteroskedasticity when it depends on the mean.

 They are therefore not appropriate in cases where spatial lo-

 cation appears to cause most of the variance effects. This was

 confirmed for this data set: When using the proposed model,

 transformation of the dependent variable no longer had any

 noticeable effect on the goodness of fit of the model (see Sec-

 tion 4).

 In the current paper, we demonstrate how a combination of

 universal kriging and nonparametric variance function estima-

 tion can be used to develop an improved regression model for

 this problem and simultaneously maintain the interpretability

 of mean function model (1). The choice of kriging is motivated

 by the fact that one of the primary uses of this model is the

 prediction of YN03 at a large number of points not included

 in the regression observations, a situation for which kriging

 has well-known optimality properties (Cressie, 1993). As the

 residuals of the OLS fit of model (1) exhibited significant het-

 eroskedasticity as well, the explicit inclusion of a spatial vari-

 ance function is expected to further improve the fit of both

 the mean and the correlation function. A generalization of the

 nonparametric variance estimation approach of Ruppert et al.

 (1997) is used to estimate the variance function.

 Section 2 proposes a model that explicitly accounts for the

 heteroskedasticity and spatial correlation in the data, and Sec-

 tion 3 describes the approach used in estimating its various

 components. In Section 4, the model estimates are discussed.

 Section 5 addresses the use of universal kriging for predicting
 the nitrogen runoff values at the remaining NRI points not

 included in the metamodel.

 2. The Model

 The data consist of ni scalar response measurements Yij (the
 YN03 measurements from Section 1) and covariates Zij re-
 corded at N distinct geographic sites xi (the weather stations
 from Section 1). The total number of observations is denoted

 by n = EN Ing.j
 The model is

 = = ZTj3 + Vj(Xi)12E/ + VU(Xi)1/2Uj (2)

 for j ni and i = 1,...,N. Here, 3 is a q x 1 vector
 of parameters and vg and vu are bivariate variance functions.
 The errors Uij are independent and identically distributed
 with E(uij) = 0 and var(uij) = 1. The Ei are such that
 E(?i) =0, var(Ei) = 1, and cov(Ei, Ei') = p(llxi - xi', |; 0),
 where p(.; 0) represents a parametric family of stationary,
 isotropic correlation functions indexed by the parameter 0.

 The {uij} are independent of the {Ei}, and both are indepen-
 dent of the {Zij }. Model (2) is typical of variance components
 models where all within-site correlations are captured by the

 {Ei} so that the {uij} are independent. However, the {lE} are

 modeled by a spatial process to allow between-site correla-

 tions.

 This model is easily adapted to other situations. The mean

 function ZiT3 can be replaced by any other parametric model,
 r n

 including ZiTj3 At if ordinary kriging is used. Similarly, if
 there are no replicates at the geographic sites xi (i.e., ni=

 1 for all i), the term vu(x,)1/2uij can be subsumed into
 VE (Xi ) 1? i .

 As mentioned earlier, many points share the same "loca-

 tion" xi, with ni ranging from 1 to 221 for the N = 329
 weather stations in our data set. There is also a computa-

 tional reason for working with these approximate locations

 instead of the actual point locations: Only this reduction in

 the true dimension of the spatial variance-covariance matrix

 allows us to use "off-the-shelf" packages to perform the com-

 putations. The remaining errors uij at a given weather station
 location xi were assumed to be independent, as the correla-
 tion is taken to be spatial. In the kriging context, the variance

 function associated with the uij is referred to as the nugget
 effect. If no replicates are available, the nugget effect would
 be estimated from the spatial error process vE(Xj)11/2E.

 3. Estimation Procedure

 3.1 Overview

 Let Y be the n x 1 vector of Yij's and Z be the n x q matrix

 with the (i,j)th row equal to Zij. Let Z be the variance-
 covariance matrix of Y. Let p be a positive integer-valued

 tuning parameter. The role of p is to determine the minimum

 number of replicates needed at an xi to use that location for
 estimating the variance functions. The choice of p is discussed
 later.

 Step 0. (Initialization step) Set Z = I.

 Step 1. Obtain

 )3 (T -1 Z)-IZ -T-ly.

 Step 2. Set

 T^ l~~ ni rij = Yij-4Zij3 and ri =- rij.
 j=1

 Step 3. Obtain vu(xi) by local linear smoothing of

 J'~u(xi): ni > p}, where

 V`u (Xi) = 1 E(rij -ri)
 j=1

 Step 4. Obtain v(xi) by local linear smoothing of
 J (xi): ni > p}, where

 DE (Xi ) =(-i )2 _ U Xi )
 n,

 Step 5. Define -vr(xi) =UVjxi) ? ?(xi)/ni and let i=
 ri/UVr(xi)12 . Estimate 0 in correlation model

 p(; 0) by fitting the variogram of the .i
 Step 6. Obtain

 z = ZE + zu,

 where (Lu)ij,i;j = V?(xi) if i = i', j j and 0
 otherwise, and

 i j = 1/2(l; 0)1.
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 Step 7. Repeat steps 1-6 Riter times.

 Of course, the local linear smoothing in steps 3 and 4 could

 be replaced by higher-degree local polynomial regression.

 After the estimation steps have been completed, predictions

 can be made, as will be discussed in Section 5.

 3.2 Details on the Implementation

 Generalized least squares. In step 1, computations involving

 the inverse of the 11,403 x 11,403 matrix I = cov(Y) are

 avoided by noting that, because of the assumed model (2),

 Z=Zu+K TVK,
 where Zu is a diagonal matrix with repeating "blocks" of

 length ni:
 Zu = block diag{vu(xi) Ini i = 1, . N,N

 with Ini being the ni x ni identity matrix, VE the N x N
 covariance matrix of the Ei, and K an N x n matrix with

 (i, ') entry equal to 1 for i' = 1 + Zklink,... , Ei=1nk and
 zero otherwise. The inverse of Z is therefore equal to

 1 ,- 1 _ 1KT(V-1+ K _1KT) KZ71

 (Horn and Johnson, 1985, p. 19), which can be rapidly

 computed because the largest nondiagonal matrix to invert

 is only N x N.

 Variance function estimation by local linear regression. The

 iu (xi) in step 3 are approximately independently distributed,
 heteroskedastic random variables, with variance equal to

 2u(x)2 / (ni - 1). This would hold exactly if /3 were known
 and the errors were normally distributed. We will therefore

 apply the theory developed in Ruppert et al. (1997) to

 construct an estimator for the function vu. Although p = 2
 observations are sufficient for computing iu (xi) at a location,
 there is clearly much more information about vu at locations
 with more observations. As n = 11,403, N = 329, and

 n = 35, it might make sense to use only locations where

 ni is "not too small." We experimented with p = 2, 3, and

 4 and found that p = 3 gave the best estimates, in terms of

 speed of convergence of the algorithm, and avoided boundary
 problems and negative variance estimates (see below). The
 number of locations where ni > 3 is 290. The special
 structure between the estimator and its variance is used in the

 bandwidth selection of the EBBS algorithm (Ruppert, 1997).

 More specifically, let vIU (xi; h) be the local linear estimator
 of vu(xi). EBBS separately estimates the squared bias and
 variance of vU (xi; h). These quantities are added together
 and their sum is minimized over a grid of h values to produce

 the EBBS bandwidth at xi. The bias estimate matches that
 in Ruppert (1997).

 The estimate of var(vu(xi; h)) uses the relation

 var(Qu(xi; h)) = s(xi; h)Tdiag{var(ibu(xi)}s(xi; h),

 where s(xi; h) is the N by 1 local polynomial "smoother
 vector" for a given value of h, such that v?(xi; h) -

 Pu(XI). *, ibu(XN))S(Xi; h). EBBS estimates var(?v(x-; h))
 by

 v'ar (-vu(x; h)) = s (x i; h) Tdiag {2 (-vu(x i; h)) /(ni -1) Is (x i; h)-

 We let hEBBS denote the EBBS bandwidth and let

 vu(xi; hEBBS) be denoted by u(x,,).

 In step 4, we obtain vE by smoothing {ig(xi): ni > p},
 again using EBBS to select the bandwidth. We will ignore the

 error in /3 so that rij = v(xi)(1/2)Ei + vu(xi)(1/2)uij and
 therefore ri = v(xi)(1/2)Ei + vu(xi)(1/2)ui. Since iu(xi) is
 unbiased for vu (xi),

 E(E(xi)) = E(-ri)2 _ vu (X i)= VE (Xi)
 n i

 Therefore, when we smooth the {iv(xi)}, there is no bias
 term involving vu, and EBBS will properly estimate the bias

 of our final estimate of vg. One might consider estimating vE
 by smoothing the {r-,i} and then subtracting off an estimate of
 vU(xi)/ni; however, in this case, the bandwidth optimal for
 smoothing the {ri} will not be optimal for the final estimate
 of vg. The EBBS bandwidth for smoothing v (xi) requires

 an estimate of var(iv(xi; h)). Estimation of this variance is
 based upon the following results.

 Let H Z(ZT- l Z)-lZTZ-l represent the "hat" ma-

 trix from the estimation of the mean. Let n be the N x n

 matrix, with (i, j) entry equal to 1/ni for j 1 + kif_l nk,

 . :* k= nk and zero otherwise. Finally, let A O B denote the
 elementwise product of equisized matrices A and B.

 Result 1. Assuming normality of the Yij's, the covariance
 matrix of the random vector containing ,2 , for i 1,..., N
 is given by

 2AZAAT (O (AZAT + 2AmmTAT), (3)

 where m = Z/3 and A = (I - H). If the error due

 to estimation of the mean Z/3 is ignored, then the above

 covariance matrix simplifies to

 2(VE + VuEl ) [2], (4)

 where Vu diag{vu(xi) for i = 1,... ,N}, E1

 diag{l/ni, i 1,...,N}, and A[2] = A ( A.
 Result 2. If the error due to estimation of /3 is ignored and

 the Yij's are normally distributed, the covariance matrix of
 the random vector containing

 iE(Xi) (-;)2 - iu(xi) i -1,.. .,N

 is given by

 EVE- 2{ (V6 ? VuE ) [2] + VJ2] E[2] E2} (5)

 where E2 = diag((ni - 1)-1).

 Let VE and Vu be obtained from VE and Vu by replacing
 vu(xi) and vE(xi) by vu and ve, respectively. Then let EVE be

 given by (5) with VE and Vu replaced by VE and Vu. Suppose
 that

 ve = (,DE(xl I..... DE v(x,)) s(xi; h),

 where, as with vu, s(xi; h) is a smoother vector. Then, the
 estimate of var(v(xE)) used by EBBS is

 T

 Our estimate of vE does not use locations where ni < p, but
 these are locations where there is relatively little information

 about vg. Because the i3g(xi) smoothed in step 4 are possibly
 negative, there is a positive probability that vE (xi) is negative.
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 As ni increases, the probability that vE (xi) is negative

 decreases. Although negative values for iv (xi) are in principle

 not a problem, it is highly undesirable to have negative

 variance estimates ve, as they would result in a negative

 definite covariance matrix VE. For p = 3, only nine locations
 had negative variance estimates, and all were located at the

 north and north west boundaries of the estimation region,

 making it very likely that they are the result of "boundary

 effects," a common nuisance in nonparametric regression

 similar to extrapolation problems in parametric regression.

 We therefore decided to add a local averaging step at each

 iteration of the algorithm to "correct" any negative estimates.

 Note that this step only changes the negative estimates and

 leaves all the other values unchanged.

 Estimation of the correlation function by variogram fitting.

 In step 5, the correlation function is estimated parametrical-

 ly by variogram fitting. Because heteroskedasticity is known

 to cause spurious patterns in variograms, it is important to

 remove that effect before estimating the correlation function.

 Hence, the spatial residuals ri have to be normalized. What
 the normalizing constants should be is a somewhat subtle

 issue. If we ignore the errors caused by the estimation of the

 mean and variance functions and use -* = ri/v6(x)1/2, the
 variogram will estimate

 2(xi - xi,) E(5E* -

 - var(* ) + var(Ei*) - 2 cov(4, Eivl)

 Vr(xi) + vr(Xi,) - 2p(xi -xi,)
 vE (xi) vE (xi,)

 whereas if we use 7 =ri/vr(xi)1/2, then

 2ty/(xi -xi/,) :=E(Ei _ 6,

 - 2 - 2p(xi - xi ) /v(x ) v6(xi/)
 Vr(xi) Vr(xi)')

 Neither Py(.) nor P'(.) is generally equal to -y(.) := 1 - p), so
 they cannot be directly used to fit the correlation function.

 However, it is easy to see that

 Y(xi -xi,) =1 1 (Xi-Xi',) (6)
 - vE (xi) vE(xi')

 Vr (Xi) Vr (Xi,)

 We can therefore construct a "bias-corrected" variogram

 based on (6). Let -i = ri/vr(xi)1/2. For a given distance t,
 let S(t) = { (i, i): llxi-xi, 11 E (t i) } with 6 a given bin
 size and n(t) = IS(t)j. The 6 was chosen so that 200 equal-
 sized bins were produced over the range of llxi -xi 11 in the
 study region, corresponding to 6 0.09?. This represents a
 compromise between the computational tractability and the

 need for sufficient observations in each bin. Then,

 1-2n(t) Z -Ei

 ty(t) = 1 - S(t)
 S(t)

 n(t) S(t) Vr (xi) vr 40'

 The following parametric model is used for p(.):

 p(t; 0) = 1 - 03e t _ (1 - 03 H

 with 01, 02 > 0 and 0 < 03 < 1. This is a mix-

 ture of two exponential functions, which was chosen to

 guarantee the positive definiteness of the variance-covariance

 matrix estimate. Clearly, other parametric models, including

 mixtures of larger numbers of exponentials, could be selected

 as correlation functions for other data sets. The parameters

 01, 02, and 03 are estimated by weighted least-squares
 minimization following Cressie (1993, p. 96).

 The estimate of the spatial variance-covariance matrix V6

 is computed by setting

 [VEii= p(Xi -Xi2;O) /v~E*i)_VE (Xi/

 4. Results

 The model was run on the CARD data set and converges in 2-

 10 iterations, depending on the strictness of the convergence

 criterion and on the choice of some of the tuning parameters.

 For p = 3, the model converges after four iterations, which

 takes approximately 10 minutes to run on a DEC 3000 Model

 900 AXP workstation, with the bulk of the computing time

 taken by the generalized least-squares (GLS) fitting (step 1

 in Section 3.1).

 Figures 1 and 2 show the nonparametric estimates of the

 variance functions vut ) and vE (.) at the weather station
 locations. Both estimates show a pattern of low values in the

 center. The estimated functions also display some interesting

 differences: The Great Lakes region exhibits high local and

 spatial variance, and the spatial variance is also high in the

 southernmost part of the study region, whereas the local

 variance is high at the western edge. Most of the variability

 in the data is explained by the local variance vu, with the

 .X * ,'
 *; gO * * 0

 *O . . .0

 00 . Spatial variance
 . 0.006 - 0.376

 . - . . [ * t . 0.376-0.747
 a* . * *..S * 0.747-1.117

 X 1.117-1.487
 * 1.487-1.858

 @0 .0.,
 f S

 Figure 2. Estimate of the variance function vE (.) at the
 weather station locations.
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 Figure 3. Variogram and estimated variogram function

 X; ;0)

 mean value of vu(xi) and v(xi) equal to 4.789 and 0.404,
 respectively.

 In Figure 3, the bias-adjusted variogram of the standard-

 ized residuals si is displayed, as well as the weighted least-
 squares fitted variogram function. The spatial correlation

 decreases rapidly as distance increases and is only important
 for closely spaced points.

 The goodness of fit of a model such as this can be

 evaluated using data-splitting techniques (e.g., Picard and
 Berk, 1990), and this approach was applied to a comparison

 between using the transformed and untransformed EPIC-WQ

 predicted nitrogen runoff values as dependent variables. This

 analysis was performed by fitting the model on 90% of the
 data and predicting on the remaining 10%, and it did not show
 any significant difference in average prediction error between
 the transformed and untransformed models. As mentioned in

 Section 1, this is not surprising because the heteroskedasticity
 is now explicitly accounted for in the model itself.

 5. Model Predictions

 The purpose of developing this metamodel is to facilitate the

 prediction of the potential nitrogen runoff at a set of 128,591

 NRI points. As the prediction and estimation points use the

 same set of weather station locations, the spatial residuals Ei
 can be considered a lattice process (Cressie, 1993). The vector

 of spatial errors E = (El, . . ., EN)T can therefore be predicted
 by a "shrunk" version of the spatial residuals ri:

 VE = V(VE + VuEl) r, (7)

 with r = (l, .... , T) by a straightforward application of
 conditional expectations (e.g., Bickel and Doksum, 1977, p.
 26). Hence, the spatial "correction" for an NRI point with
 closest weather station location xi* can be predicted by the
 corresponding element of the vector E. Figure 5 in Opsomer et

 al. (1997) shows a plot of the values of the spatial corrections
 6i.

 6. Conclusions

 We have described a method for fitting spatial data that
 combines parametrically specified mean and correlation

 functions with an unspecified spatial variance function. It

 can easily be generalized to other situations with different

 parametric models, or to situations without replication at

 the spatial locations. An iterative procedure for estimating

 the parameters and nonparametric regressions was explained

 in this article. However, no attempt was made to prove

 optimality or convergence properties for our algorithm, nor to

 more than sketch its theoretical properties under simplifying

 assumptions. These are topics for future research.
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 RPESUMPE

 Nous presentons une methode d'ajustement de modeles de
 regression a des donnees presentant une correlation spatiale
 et une heteroscedasticite. Il est bien connu qu'ignorer que
 la variance n'est pas constante ne biaise pas les estimations
 des moindres carres des parametres de la regression, si bien
 que ceux qui analysent de telles donnees sont facilement
 conduits a penser qu'une legere heteroscedasticite peut etre
 ignoree, ce qui est faux. Car, en l'ignorant l'ajustement des
 variogrammes conduit a des fonctions de correlation biaisees.
 En modelisant l'heteroscedasticite et en standardisant par
 l'ecart type estime, notre approche elimine ce biais dans les
 correlations. Nous utilisons une combinaison de techniques
 de regression parametrique et nonparametrique pour estimer
 de maniere iterative les diff6rentes composantes du modele.
 Nous demontrons cette approche sur un corpus de donnees
 important d'ecoulement de l'azote predit dans des terres

 agricoles du centre-ouest et du nord des Etats-Unis. Pour
 ce corpus, le modele se separe en trois composantes: (1) la
 fonction moyenne qui comprend les variables de la pratique
 agricole, les caracteristiques locales du sol et du climat et
 l'application du traitement azote qui est supposee lineaire
 en ses parametres et qui est ajustee par les moindres carres
 generalises, (2) la fonction de variance, qui contient une
 composante locale et une autre spatiale, dont la forme n'est
 pas specifiee, est ajustee par un regression lineaire locale,
 et (3) la fonction de correlation spatiale qui est estimee
 par l'ajustement d'un modele de variogramme parametrique
 aux residus standardises, avec la standardisation ajustant le
 variogramme en presence d'heteroscedasticite. L'ajustement
 de ces trois composantes est effectue' de maniere it erative
 jusqu'a la convergence. Le modele fournit un ajustement aux
 donnees ameliore si on le compare au modele pr&cedent qui
 ignorait heteroscedasticite et correlation spatiale.
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 APPENDIX

 Proof of Result 1

 The vector of residuals rij can be written as r = (I - H)Y.
 From the definition of t,, we have the vector of ri values

 equaling (I - H)Y. The stated result in (3) then follows

 directly from Lemma 1 of Ruppert et al. (1997) for the special

 case of normal Yi.

 If the bias due to estimation of Zf3 is ignored, then (3)

 simplifies to

 2 (,,E,,T) [2]

 Expression (4) follows directly after noting that we are

 indexing the matrix Z as Eij,iljl = cov(Yij, Yi//) for j =
 1,. ni, i= 1,... N. Hence,

 1 ni ni '

 nn/j=1 j'==1

 Vu (xi) { ? + V6(xi), =

 V dV(x i)V6(x i')p(Ixi - xi/1; 0), i # i,

 Proof of Result 2

 Recall that

 ni ni

 VU (xi ) -1 Z(rij-ri ) = E (uiju i)2
 j=1 j=1

 Because the {uij} are i.i.d. normals, uiiZ is independent of
 f5u(xi). Therefore, ri is independent of f5u(xi). Let 2r be
 the covariance matrix of the vector ((. )2 , (TAr. ) 2) T, Z

 the covariance matrix of (PE(xI),. .,i,(xN))T, and L%u
 the covariance matrix of (iu (xI), .. ,iu (xN)T) . As iu (xi)
 is vu(xi)/(ni - 1) times at X2(ni -1) random variable, we
 have

 Zfv, = diag (2v (xi)) 2V2] E21

 By (4), and ignoring the error caused by using 3 in place of

 /3, we have

 -V? = 2(VE + VuEI)[21 + L%, E[2] 1

 + [E)2] + VJ[2]E[2]E}. (8)
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