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SUMMARY

Collecting information on multiple longitudinal outcomes is increasingly common in many clinical set-
tings. In many cases, it is desirable to model these outcomes jointly. However, in large data sets, with
many outcomes, computational burden often prevents the simultaneous modeling of multiple outcomes
within a single model. We develop a mean field variational Bayes algorithm, to jointly model multiple
Gaussian, Poisson, or binary longitudinal markers within a multivariate generalized linear mixed model.
Through simulation studies and clinical applications (in the fields of sight threatening diabetic retinopa-
thy and primary biliary cirrhosis), we demonstrate substantial computational savings of our approximate
approach when compared to a standard Markov Chain Monte Carlo, while maintaining good levels of
accuracy of model parameters.

Keywords: Bayesian computing; Generalized linear mixed model; Markov chain Monte Carlo; Mean field variational
Bayes; Multivariate mixed models; Repeated measurements.

1. INTRODUCTION

Since the random-effects models paper of Laird and Ware (1982), mixed models have become a standard
tool for the analysis of longitudinal data in medical studies. The aim is to capture the evolution over time
of a marker of interest. Fixed effects describe the influence of covariates on the population mean profile,
and random effects describe the group-specific deviations from the population mean.

Mixed models are now so well established that a number of books could introduce the reader to the
basic principles and many extensions of methods for analyzing longitudinal data. See for example Verbeke
and Molenberghs (2000) for details of the linear mixed model, mainly focusing on continuous longitudinal
outcomes, or Molenberghs and Verbeke (2005), McCulloch and others (2008) or Diggle and others (2002)
for further details of various extensions including modeling noncontinuous responses with generalized
linear mixed models.

Our focus is on the longitudinal analysis of medical data, with measurements of multiple clinical
variables collected repeatedly over time. However, at its most basic level, our problem is the analysis
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178 D. M. HUGHES AND OTHERS

of grouped data. Such data are commonly found in a wide range of applications, not limited to medical
data, including panel data analysis (Baltagi, 2008), multilevel models (Gelman and Hill, 2007; Goldstein,
2011), and small area estimation (Rao and Molina, 2015).

Extensions have been developed in many directions. We consider the case where multiple longitudinal
outcomes are observed on each patient in a clinical study. In such studies, both repeated observations
of a marker on the same patient, and observations of different markers on the same patient are likely
to be correlated, and modeling strategies should account for the correlation implied by this hierarchical
structure. For example, patients with diabetes will routinely have their glycated hemoglobin (HbA1c),
cholesterol, blood pressure, and estimated glomerular filtration rate (eGFR) measured (along with poten-
tially many other outcomes, including level of retinopathy collect at retinal screening visits for example),
to allow monitoring of a patient’s diabetes severity and assessment of the risk of developing additional
complications such as sight threatening diabetic retinopathy.

Many studies that collect longitudinal data on multiple outcomes analyze longitudinal trends separately
using univariate mixed models. Depending on the questions of interest this may be a legitimate approach.
However, by analyzing outcomes separately we are unable to describe the relationship between outcomes
or to assess the simultaneous effect of some covariate on a number of related outcomes. To answer these
questions, multivariate mixed models can be used.

Verbeke and others (2014) provide a review of various ways of analyzing multivariate longitudinal
data. Our work in this article concerns the conditional models in Section 3 of their review. Constructing
multivariate mixed models for longitudinal data involves a trade-off between the information gained in such
models and the computational cost of fitting the model. For this reason, most work on multivariate mixed
models only considers the inclusion of a small number of longitudinal markers (typically 2–5 markers). A
notable exception is a pairwise approach that considers all combinations of bivariate longitudinal models
to assess changes over time in 22 hearing threshold frequencies (Fieuws and others, 2007). A key problem
is that the inclusion of more longitudinal markers, usually also involves the specification of higher-
dimensional random effects distributions. This makes maximum likelihood estimation challenging due
to the need to evaluate high-dimensional integrals over random effects distributions. Bayesian estimation
through Markov Chain Monte Carlo (MCMC) can also be computationally challenging due to the high-
dimensional nature of the problem.

In this article, we propose mean field variational Bayes (MFVB) as an efficient way of fitting multivariate
mixed models. MFVB is widely used in computer science (e.g. Bishop, 2006) though is perhaps less
familiar in the statistical literature. This situation is changing, thanks in part to two recent reviews of
MFVB (Blei and others, 2017) and the related variational message passing (Wand, 2017).

In Section 2, we describe multivariate generalized linear mixed models (MGLMMs) and provide a
Bayesian specification of the model of interest in this paper. Section 3 gives a brief overview of MFVB
methods and describes in detail the computations necessary to develop an algorithm for MFVB estimation
of MGLMMs. We assess the performance of our MFVB algorithm in comparison to popular MCMC
routines, in simulated data sets in Section 4, whilst in Section 5, we show the performance of our approach
in a relatively small data set of patients with primary biliary cirrhosis and a much larger dataset of patients
with diabetes who were screened for sight threatening diabetic retinopathy. Section 6 provides a brief
conclusion to the article.

2. MULTIVARIATE GENERALIZED LINEAR MIXED MODELS

2.1. Notation

We begin by first describing the notation used in this article. We consider a study that collects data on m
individuals. For each patient, data are collected on up to R longitudinal markers of interest. We let yirj denote
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the jth observation (j = 1, . . . , nir) of the rth marker (r = 1, . . . , R) for patient i, (i = 1, . . . , m) and collect
all observations of marker r on a particular patient into a vector yir = (yir1, . . . , yirnir )

T . Further, we collect
all observations of the R markers on a particular patient into a combined vector yi = (yT

i1, . . . , yT
iR)

T , and let
y = (yT

1 , . . . , yT
m)T denote all the longitudinal observations for the study in question. We may specify some

covariates that are believed to influence the change over time in each longitudinal marker. The covariates
for each marker, r, for each individual, i, are stored in a (nir × pr) design matrix Xir . The overall design
matrix for individual i is represented by Xi = blockdiag(Xi1, . . . , XiR). Similar design matrices can be
constructed for the random effects terms in a mixed model, which are denoted by the (ni × q) matrix
Zi = blockdiag(Zi1, . . . , ZiR), where q = ∑R

r=1 qr denotes the total number of random effects included
in the model, and ni =∑R

r=1 nir denotes the total number of measurements on individual i. These design
matrices can be stacked across all individuals, giving X = [XT

1 , . . . , XT
m]T and Z = blockdiag{Z1, . . . , Zm}.

2.2. Model specification

We now proceed to develop our MGLMM. We assume that each response, Yr is distributed according to a
member of the exponential family, to allow the inclusion of non-continuous responses such as binary and
Poisson markers, in addition to continuous markers,

Yr|β, u ∼ exp{yT
r �−1

εr
Crν̃r − 1T �−1

εr
b(Crν̃r)− 1T c(yr , φr)}, (2.1)

where for notational convenience we have defined C = [X Z] and ν̃ = (βT , uT )T , with β denoting the
p = ∑R

r=1 pr fixed effects in the model, and u denoting the mq vector of individual random effects. The
subscript r attached to any of these design matrices denotes the parts relating to marker r. We denote by
�ε a matrix of nuisance parameters which in our case is a diagonal matrix with diagonal entries of σ 2

εr
if

the row corresponds to an observation from the rth Gaussian marker, and 1 if the row corresponds to an
observation of a binary or count longitudinal marker.

In 2.1, we use b to denote the cumulant function and c to denote the base measure according to the
notation of McCullagh and Nelder (1989), and assume elementwise evaluation of the functions b and c
(i.e., the appropriate function is applied to the appropriate row of input). For example, if Yr is a continuous
marker b(x) = x2/2 whilst if Yr is binary then b(x) = log(1 + ex) and if Poisson, b(x) = ex. To extend
this model for our needs in this article to fit a joint model to multiple longitudinal responses, we consider
the following density for our stacked response Y,

Y|β, u ∼ exp{yT �−1
ε Cν̃ − 1T �−1

ε b(Cν̃)− 1T c(y, φ)}.

Here, we have abused notation slightly for the sake of neat exposition, and understand b(x) and c(x) to be
elementwise application of whichever transformation is appropriate for the type of outcome corresponding
to the row in question. We assume that the random effects terms jointly follow a multivariate normal
distribution with mean 0 and unstructured covariance matrix �R. That is,

u|�R ∼ N(0, Im ⊗�R),

with ⊗ denoting a Kronecker product. The remaining terms in our model are;

�R|a1, . . . , aq ∼ IW (ν1 + q− 1, 2νdiag{1/a1, . . . , 1/aq}), ak ∼ IG(1/2, A−2
k )

σ 2
εr
∼ IG(1/2, a−1

εr
), aεr ∼ IG(1/2, A−2

εr
), β ∼ N (0, σ 2

β Ip). (2.2)
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180 D. M. HUGHES AND OTHERS

In (2.2), we specify an Inverse-Wishart prior for the random effects covariance matrix �R and inverse-
gamma priors for the residual variances σ 2

εr for the Rc continuous markers included in the MGLMM.
The inclusion of auxiliary variables ak (k = 1, . . . , q), and aεr (r = 1, . . . , Rc) follows the extension
of Huang and Wand (2013) in order to place weakly informative priors on the covariance terms in �R

that are equivalent to the Half-Cauchy distributions proposed by Gelman (2006). The choice of ν = 2
allows the standard deviation terms in �R to have Half-t distributions with 2 degrees of freedom, whilst
the correlation parameters have uniform distributions over (−1, 1). Each auxiliary variable is assumed to
independently follow an inverse-gamma distribution as specified in (2.2). A Normal prior with mean 0,
and variance σ 2

β Ip is placed on the fixed effects parameter β.
We desire posterior distributions on θ = (β, u, �R, a1, . . . , aq, σ 2

ε1
, . . . , σ 2

εRc
, aε1 , . . . , aεRc

). As men-
tioned in Section 1, one way to proceed would be to use an MCMC sampling routine. However, as we
show in Section 5, this can be very computationally intensive in large data sets that contain data on
many longitudinal markers. For this reason, in Section 3, we work towards a mean field variational Bayes
solution for fitting MGLMMs in high-dimensional data.

3. VARIATIONAL INFERENCE

Our aim in Bayesian inference is to find the posterior distribution for the parameters of interest in a model,
described by θ . Mean field variational Bayes aims to provide an approximation to p(θ |y) in situations
where a full MCMC sampling procedure would be computationally expensive. An introduction to MFVB
from a statistical perspective is given in Ormerod and Wand (2010). The basic premise is to approximate the
complex posterior p(θ |y) (which is challenging to estimate using MCMC), by a simpler density function
q(θ).

3.1. Overview of mean field variational Bayes

MFVB achieves substantial computational gains by enforcing a product restriction

q(θ) =
M∏

i=1

qi(θi) for some partition {θ1, . . . , θM } of θ .

This restriction is known as the mean field restriction, hence the optimal solution, q∗(θ) (from all possible
distributions Q) is known as the mean field variational Bayes (MFVB) approximation to the actual posterior
distribution p(θ |y). The challenge of MFVB is to select an optimal q∗(θ) that is as close as possible, in
terms of Kullback–Leibler divergence to the true posterior. To justify this approach, first consider the joint
posterior of the parameter vector given the observed data,

p(θ |y) = p(y, θ)

p(y)
= p(y|θ)p(θ)

p(y)
.

As explained in Ormerod and Wand (2010), simple algebraic manipulations show that the logarithm of
the marginal likelihood satisfies

log p(y) =
∫

q(θ) log
{

p(y, θ)

q(θ)

}
dθ +

∫
q(θ) log

{
q(θ)

p(θ |y)

}
dθ ,

= log p(y, q)+ KL{q(θ)||p(θ |y)}.
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Variational Bayes for multivariate mixed models 181

Since a KL divergence is always non-negative, we have that p(y) ≥ p(y, q), and so minimizing the
KL divergence (which is often intractable) is equivalent to maximizing p(y, q) (which is usually more
tractable). Hence, we have that

q∗(θ) = arg min
q∈Q

KL{q(θ)||p(θ |y)} = arg max
q∈Q

p(y, q).

Under the mean field product restriction, the optimal q-density functions satisfy

q∗i (θi) ∝ exp{E−θi [log p(y, θ)]} ∝ exp{E−θi [log p(θi|rest)]}, (3.3)

with E−θi denoting the expectation with respect to all parameters in the model except for those in partition
θi (referred to as the rest).

MFVB proceeds by determining optimal forms for each partition of θ using (3.3), which will result in
expression that each depend on other partitions of θ . These expressions can be iteratively updated until
there is negligible increase in log p(y, q).

3.2. Mean field variational Bayes for multiple markers

Having given a sketched outline of the key elements of MFVB approximations, we now develop the
MFVB approximation for the MGLMMs described in Section 2. We seek an approximation to the full
posterior as follows.

p(β, u, �R, a1, . . . , aq, σ 2
ε1

, . . . , σ 2
εRc

, aε1 , . . . , aεRc
|y),

≈ q(β, u, �R, a1, . . . , aq, σ 2
ε1

, . . . , σ 2
εRc

, aε1 , . . . , aεRc
),

= q(β, u, a1, . . . , aq, , aε1 , . . . , aεRc
)q(�R, σ 2

ε1
, . . . , σ 2

εRc
),

= q(β, u)q(�R)

Rc∏
r=1

{
q(σ 2

εr
)q(aεr )

} q∏
k=1

q(ak).

Note that the second restrictions are induced simply due to assumed independencies in the model specified
in Section 2, and place no further restriction on the parameter space. That is, the strength of the MFVB
approach depends in this case on the amount of information lost by the approximation by two factors.

Optimal q-densities can be calculated according to (3.3). The updates for q(σ 2
εr
), q(aεr ), and q(ak)

involve only relatively standard calculations and result in optimal densities that are inverse gamma distri-
butions, with arguments according toAlgorithm 1. Similarly, q∗(�R) can be shown to be an inverse Wishart
distribution. When all of the longitudinal markers are continuous, q∗(β, u) is a multivariate normal dis-
tribution. However, when at least some of the longitudinal markers are Poisson or binary, then evaluation
of (3.3) no longer leads to a recognizable distribution. This is caused by the need to evaluate Eq[exp(Cν̃)]
and Eq[log(1+exp(Cν̃))], respectively. To overcome this difficulty, we follow the semiparametric MFVB
approach outlined by Rohde andWand (2016) and specify that q∗(β, u, μq(β,u)

, �q(β,u)
) ∼ N (μq(β,u)

, �q(β,u)
).

We still need to evaluate the logistic term for binary markers. A number of approaches could be taken
to deal with this, either through quadrature, or through the tilted bound of Jaakkola and Jordan (2000).
However, we follow the approach of Nolan and Wand (2017) who use Knowles–Minka–Wand updates
with Monahan--Stefanski updates to approximate the logistic fragment with a scaled mixture of normal
distributions (Knowles and Minka, 2011; Wand, 2014; Monahan and Stefanski, 1989). Full derivations of
these optimal q-densities are given in the Supplementary material available at Biostatistics online.
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The updates for �q(β,u)
require calculation of the inverse of a potentially large matrix, which causes

a huge computational cost, especially when m is large. However, we can exploit the block-diagonal
structure of �q(β,u)

and streamline our MFVB algorithm using the approach of Lee and Wand (2016), in
order to substantially improve the computational speed of our algorithm. Further details of the streamlining
approach are given in the Supplementary material available at Biostatistics online. The full streamlined
MFVB approximation for estimating an MGLMM is given in Algorithm 1. As noted by Rohde and Wand
(2016) and Nolan and Wand (2017), the semiparametric MFVB algorithm proposed is not guaranteed to
converge, although our empirical work suggests this is not a problem most of the time.

Algorithm 1 Streamlined algorithm for multivariate generalized linear mixed models.
1. Initialize Mq(�−1

R )
a q× q positive definite matrix, μq(1/ak )

> 0, 1 ≤ k ≤ q, μq(1/σ2
εr ) > 0, 1 ≤ r ≤ Rc,

and μq(1/σ2
ar ) > 0, 1 ≤ r ≤ Rc

2. Cycle through updates
3. S← 0; s← 0
4. for i = 1, . . . , m do
5. Gi ← XT

i E[�−1
εi
]diag{Ex[b′′(σx + μ)]}iZi;

6. Hi ←
{

ZT
i E[�−1

εi
]diag{Ex[b′′(σx + μ)]}iZi +Mq(�−1

R )

}

7. S← S+GiHiGT
i ; s← s+GiHi

(
Mq(�−1

R )
μq(ui)

− ZT
i (E[�−1

εi
](yi − Ex[b′(σx + μ)]i))

)
8. �q(β)←

(
XT E[�−1

ε ]diag{b′′(σx + μ)}X + σ−2
β Ip − S

)−1

9. μq(β)
← μq(β)

+�q(β)

{
XT E[�−1

εi
](yi − Ex[b′(σx + μ)]σ−2

β μq(β)
Ip + s

}
; μOLD

q(β)
← μq(β)

10. for i = 1, . . . , m do
11. �q(ui)← Hi +HiGT

i �q(β)GiHi

12. μq(ui)
← μq(ui)

+Hi

{
ZT

i E[�−1
εi
](yi − Ex[b′(σx + μ)])−Mq(�−1

R )
μq(ui)

−GT
i (μq(β)

− μOLD
q(β)

)
}

13. μ← Xμq(β) −
⎡
⎢⎣

Z1μq(u1)

...
Zmμq(um)

⎤
⎥⎦; 	← √

1n1T
8 + σ(s2)T ; σ ← diagonal{X�q(β)X}

14. for i = 1, . . . , m do
15. σi ← σi − 2diagonal{Zi(�q(β)GiHi)

T XT
i } + diagonal{Zi�q(ui)Z

T
i }

16. If marker r is Gaussian, Ex[b′(σx + μ)]r ← μ; Ex[b′′(σx + μ)]r ← I∑
i nir

17. If marker r is Poisson, Ex[b′(σx + μ)]r ← Ex[b′′(σx + μ)]r ← exp
(
μ+ 1

2σ
)

r
;

18. If marker r is binary, Ex[b′(σx + μ)]r ← 

(

μsT

	
p
)

; Ex[b′′(σx + μ)]r ←
{
φ

(
μsT

	

)
/	

}
p� s

19. for r = 1, . . . , Rc do
20. Bq(σ2

εr )← μq(1/σ2
εr ) + 1

2

{||yr − Crμq(βr ,ur )||2 + tr(CT
r Cr�q(βr ,ur ))

}
21. μq(1/σ2

εr )←
1
2 (

∑m
i=1 nir+1)

B
q(σ2

εr )

; Bq(aεr )← μq(1/σ2
εr ) + A−2

εr
; μq(1/aεr )← 1

μ
q(1/σ2

εr )
+A−2

εr

22. for k = 1, . . . , q do Bq(ak )← νMq(�−1
R )kk
+ A−2

k ; μq(1/ak )←
1
2 (ν+q)

Bq(ak )

23. Bq(�R)←∑m
i=1

(
μq(ui)

μT
q(ui)
+�q(ui)

)+ 2νdiag{μq(1/a1), . . . , μq(1/aq)}
24. Mq(�−1

R )
← (ν + q+ m− 1)B−1

q(�R)

25. until the increase in p(y, q) is negligible
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4. SIMULATION STUDY

In this section, we assess the performance of the MFVB Algorithm 1, through a simulation study. We are
interested in two key measures of performance; the accuracy of the MFVB posterior distributions when
compared to posteriors derived using MCMC, and the speed gains in using the MFVB algorithm over the
MCMC algorithm.

We designed two simulation scenarios. The first considered three continuous longitudinal markers
according to model (4.4). The second scenario, considered one continuous, one binary and one Poisson
longitudinal marker, according to model 4.5,

Yi,1,j = 0.68− 0.95xi,1,j + ui11 + ui12xi,1,j + ε1, σ 2
ε1
= 0.1,

Yi,2,j = −2.50+ 0.12xi,2,j + ui21 + ui22xi,2,j + ε2, σ 2
ε2
= 0.25,

Yi,3,j = 0.45+ 1.21xi,3,j + ui31 + ui32xi,3,j + ε3, σ 2
ε3
= 0.15,

u ∼ N

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎣

2.58 0.46 0.22 0.42 0.78 0.23
0.46 1.21 0.37 0.69 0.14 0.19
0.22 0.37 1.04 0.73 0.61 0.38
0.42 0.69 0.73 1.36 0.87 0.14
0.78 0.14 0.61 0.87 1.73 0.92
0.23 0.19 0.38 0.14 0.92 1.47

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

. (4.4)

We assumed m = (100, 1000, 10 000) patients and simulated 100 data sets for each sample size. For
each individual patient, we simulated between 5 and 10 visits according to a uniform distribution. At each
visit, we simulated the three response outcome measurements according to model (4.4) or (4.5),

Yi,1,j = 0.68− 0.95xi,1,j + ui11 + ui12xi,1,j + ε1,

log(E[Yi,2,j]) = −2.50+ 0.12xi,2,j + ui21 + ui22xi,2,j,

logit(E[Yi,3,j]) = 0.45+ 1.21xi,3,j + ui31 + ui32xi,3,j, (4.5)

with all other simulation details remaining unchanged. For each of the simulated data sets we first fit a
MGLMM using MCMC sampling using the R package mixAK (Komárek and Komárková, 2014). We
simulated 10 000 samples after a burn in of 5000 and thinned by 10. Convergence of the MCMC samples
was assessed by trace plots and autocorrelation functions. We also fit a MGLMM using our streamlined
MFVB algorithm. The stopping criteria for our algorithm was the relative change in the log lower bound,
log p(y, q) falling below 10−7 or a maximum of 500 iterations. Each simulated data set was submitted to
the University of Liverpool cluster computing system, Condor, and the computations were performed on
Windows 10 computers with a 3.4 gigahertz Intel Core i7-6700 processor and 16 gigabytes of random
access memory.

4.1. Comparison of accuracy

To compare the accuracy of the MFVB algorithm to the MCMC sample, we calculated the accuracy score
based on the integrated absolute error as proposed by Faes and others (2011).

accuracy(q∗i (θi)) = 100
(

1− 1

2

∫ ∞

−∞
|q∗i (θi)− pMCMC(θ |y)|dθ

)
%. (4.6)

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/24/1/177/6276262 by U

niversity of Technology Sydney user on 28 February 2023
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Fig. 1. Accuracy scores for mean field variational Bayes compared to MCMC for simulated data sets with three
continuous longitudinal markers (top panel) and three types of markers (bottom panel) in the simulation with m = 100
individuals.

We used a kernel density estimate with plug-in bandwidth to estimate pMCMC(θ |y) using the R package
KernSmooth, (Wand and Ripley, 2009).

Figure 1 shows boxplots of the accuracy for each parameter in simulation scenarios 1 and 2, in the
case where there were m = 100 individuals. Similar plots for m = 1000 and m = 10 000 individuals are
shown in the Figures S1 and S2 of the Supplementary material available at Biostatistics online. When
all the markers are continuous, the MFVB algorithm estimates the posterior distribution with very good
accuracy. The fixed effects are estimated very well, as are the estimates of residual standard deviations,
with very little difference between the MCMC and MFVB posteriors. The random effects covariance
matrix is slightly less accurate, but the MFVB posteriors are still very similar to the MCMC posteriors.
When some of the markers are non-Gaussian, the MFVB estimates are less accurate. The fixed effects
are still generally well estimated although the random effects covariances less so. This is a well-known
feature of MFVB algorithms (see e.g., Luts and Wand, 2015). However, an inspection of Figures S3
and S4 of the Supplementary material available at Biostatistics online, which show the posterior density
functions for scenarios 1 and 2, respectively for a single simulated data set, shows that the means of the
posterior distributions are usually very similar for both the MFVB and MCMC approaches and also that the
true parameter value was usually within MFVB credible intervals. The accuracy of posterior distribution
estimation does not appear to be influenced by sample size very much.
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Table 1.Average (standard deviation) computing time in seconds, for MFVB
and MCMC approaches in simulated data sets.

MCMC MFVB Ratio

Three Gaussian markers
m = 100 267.32 (63.97) 3.79 (1.46) 70.49
m = 1000 2029.57 (497.02) 31.28 (11.70) 64.88
m = 10000 23 264.57 (5029.08) 400.54 (125.54) 58.08

One Gaussian, Poisson, and Bernoulli marker
m = 100 430.26 (167.45) 35.07 (17.35) 12.27
m = 1000 4717.34 (1222.18) 635.45 (225.35) 7.42
m = 10 000 38 121.47 (15 647.86) 4009.55 (2566.41) 9.51

4.2. Comparison of computational speed

We also quantified the difference in computational time between the MFVB and MCMC approaches. The
average time taken to fit each model in the simulated data sets is shown in Table 1. The MFVB routine is
clearly substantially faster than the MCMC procedure. When all markers in an MGLMM are continuous,
the speed gains are particularly noticeable. For example, in the model with 10 000 patients, the MCMC
model takes more than 6 hours to fit, whilst the MFVB takes less than 7 min. The speed gains are less
substantial in these simulations where the markers are not all continuous, although even in this case, when
there are 10 000 patients, the MCMC model takes over 10.5 h to fit, whilst the MFVB model fits in just
over an hour. The convergence of the MFVB algorithm is slower when adjustments need to be made for
the Poisson and binary markers.

A comparison of speeds is to some extent subjective. Both approaches to fitting a MGLMM have
different stopping criteria, which we have described at the beginning of this section. We have used freely
available code to estimate our MCMC models. More efficient software could perhaps be written although,
in our testing, themixAK package was quicker than the more flexiblerstan package for fitting MGLMMs
using MCMC (in terms of obtaining the same number of samples with the same burn-in and thinning
settings). We note too that other packages within R, such as the stan_mvmer function in rstanarm
Goodrich and others (2018) or the brms package Bürkner (2017) could fit the models considered in
this article, and bespoke codes may indeed produce MCMC estimates faster. Nevertheless, our aim in
comparing speeds in this article is to show that MFVB models are substantially quicker than off-the-shelf
software for MCMC.

To summarize our simulation results, we have shown that MFVB algorithms offer substantial time
gains in fitting MGLMMs. These gains needs to be balanced against the reduced accuracy in some of
the posterior distribution estimates, especially when not all of the markers are continuous. However,
depending on which parameters are of interest to the researcher, the MFVB algorithm gives estimates of
the means of the posterior distributions that are very similar to those obtained by MCMC, but in a much
shorter time frame.

5. REAL DATA EXAMPLES

We now demonstrate the use of the MFVB algorithm to fit MGLMMs in two real data applications. The
first is the well known, but relatively small primary biliary cirrhosis (PBC) data set. This data is publicly
available within the mixAK package in R (and also in Appendix D of Fleming and Harrington (1991)
and at http://lib.stat.cmu.edu/datasets/pbcseq). It contains measurements of seven continuous (bilirubin,
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albumin, alkaline phosphatase, cholesterol, serum glutamic-oxaloacetic transaminase, platelet count, and
prothrombosis time) and three binary longitudinal markers (presence of ascites, hepatomegaly, and blood
vessel malformations (spiders)) on 312 patients.

The second data set is a much larger data set coming from the Individualised Screening for Diabetic
Retinopathy (ISDR) Cohort Study at the University of Liverpool. This study collected biomarker informa-
tion on a number of risk factors for diabetic retinopathy in patients with diabetes who attended screening
programs in the Merseyside region. For the purposes of this illustration, we will consider data on 17
682 patients, for whom we have repeated measurements of 10 continuous markers (HbA1c (mmol/mol),
cholesterol (mmol/L), diastolic blood pressure (mm/Hg), systolic blood pressure (mm/Hg), high-density
lipoprotein cholesterol (mmol/L), low-density lipoprotein cholesterol (mmol/L), eGFR (mL/min/1.73
m2), Albumin-Creatinine Ratio (mg/mmol), triglycerides (mmol/L), and body mass index (kg/m2) and
two binary markers (retinopathy gradings in left and right eyes). A patient had a retinopathy grading of 0
if they were graded R0 (no retinopathy) in the eye being examined, and 1 if they were graded R1 (mild
non-proliferative/background retinopathy). We have not considered any observations where the gradings
showed more serious retinopathy, and so this analysis considers the longitudinal trajectories before sight
threatening diabetic retinopathy is diagnosed. More details on this cohort can be found in García-Fiñana
and others (2019) and Eleuteri and others (2017). Note that in both examples not all markers were col-
lected at every time point for each patient. For each continuous marker, we considered a model with a
random intercept and random slope, and a random intercept model for each binary marker. In addition,
each marker had a fixed intercept and time slope. The values for the hyperparameters, Aεr , Ak , and σ 2

β are
each set to 10 000 and ν = 2. In this analysis, all continuous markers except for systolic/diastolic blood
pressure, body mass index, and eGFR were log transformed. All continuous markers were then scaled
prior to the analysis.

We compared the time taken to fit MGLMMs, and the accuracy of the posterior distributions for
increasing numbers of markers in each data set. As before we assessed the accuracy using the integrated
absolute error (4.6). All computations were performed on a personal computer with Windows 10 operating
system and a 3.5 gigahertz Intel Xeon E5-1620 processor and 16 gigabyte of random access memory.

5.1. Primary biliary cirrhosis

We first assessed the MFVB algorithm in the PBC data which is small enough for MCMC sampling to
be computationally feasible, even in the 10 marker model. Our aim was to provide proof-of-concept in a
small data set where comparison to MCMC was relatively easy, in order to justify the use of the MFVB
algorithm in much larger data sets where MCMC would be computationally challenging.

Table 2 shows the time taken to fit MGLMMs with increasing numbers of markers. In general, the
MFVB approach was substantially faster than MCMC sampling. As more markers were included in the
model, the improvement by using the MFVB approach was even more noticeable. Notice that even in a
relatively small data set, the full 10-marker MGLMM took around 48 min to fit using MCMC, but only 14
s using our MFVB algorithm. An example of the failure to converge of the MFVB model can be seen in the
8-marker model. Nevertheless, after 500 iterations, the results, although not technically converged, still
gave good accuracy estimates (results not shown, but are comparable to those presented in the 10-marker
model in Figure S5 of the Supplementary material available at Biostatistics online.

In terms of accuracy, we present here the results for the most complicated model with 10 longitudinal
markers. Figure S5 of the Supplementary material available at Biostatistics online shows heat maps
showing the accuracy for the model parameters and the implied correlations between longitudinal markers.
Only two random effects variances score lower than 50% accuracy, whilst the majority of parameters are
estimated with good to excellent accuracy, showing that very similar results can be obtained in the 14 s
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Table 2. Average computing time for MFVB and MCMC approaches in primary biliary cirrhosis data
(in seconds) and in the diabetic retinopathy data (in hours).

Number of
markers 1 2 3 4 5 6 7 8 9 10 11 12

Primary biliary cirrhosis computation times (in seconds)
MCMC 84.20 134.65 219.19 342.17 483.93 665.26 895.80 1983.25 2409.01 2890.92
MFVB 1.30 2.88 3.14 5.95 6.64 6.55 6.87 27.73 13.73 14.75
Ratio 64.77 46.80 69.74 57.53 72.92 101.58 130.39 71.52 175.43 196.05

Diabetic retinopathy computation times (in hours)
MCMC 1.14 1.71 2.90 4.44 6.41 8.90 11.99 15.84 19.78 24.80 53.22 62.19
MFVB 0.04 0.07 0.12 0.32 0.33 0.47 0.48 0.51 0.64 0.69 0.77 0.92
Ratio 27.56 25.22 24.08 13.66 19.59 18.97 24.89 31.16 30.77 35.68 69.02 67.57

required for the MFVB algorithm, and the MCMC sampling that required 48 min. As in the simulation
studies, the fixed effects were estimated with very high accuracy.

5.2. Individualized screening for diabetic retinopathy

The diabetic retinopathy application demonstrates the performance of MFVB in a much larger data set
and gives a greater indication of the speed gains possible with MFVB. The times in hours of models with
increasing numbers of longitudinal markers are shown in Table 2. The full 12-marker model was fit in
less than one hour using MFVB whilst the MCMC fit required more than 2.5 days. Figure 2 reports the
accuracy of this model. Again the fixed effects estimates are generally very well estimated, and most of the
random effects covariance matrix parameters are reasonably accurately estimated, and clearly in a much
shorter time frame than the MCMC model. The random effects for the two binary intercepts are poorly
estimated in this case.

The correlation plot in panel (c) of Figure 2 reveals markers that are highly correlated, and shows why
one may wish to model longitudinal markers simultaneously. We are able to identify reasonably strong
positive correlations between changes over time in a patient’s triglycerides values and their HbA1c,
cholesterol, and low-density lipoprotein cholesterol values. We also note negative correlations between
triglycerides and high-density lipoprotein cholesterol both in terms of initial value and changes over time.

Figure 3 shows the fitted models for each of the 12 diabetic retinopathy markers for three patients.
There is very little difference between the fitted regression lines obtained by MCMC and MFVB.
Even when accuracy scores (compared to MCMC) are not as high as one might desire, many of the
results extracted from a model fit are almost identical to those that would be obtained with MCMC.
The lower accuracy is largely caused by the known problem of poor covariance estimation for some
parameters.

6. SUMMARY

In this article, we present an approach for fast approximate Bayesian inference for multivariate lon-
gitudinal data. We have described how mean field variational Bayes can be used to obtain fast
accurate results, that are very similar to those obtained by the much slower MCMC routines. Our
article adds to the growing literature showing that MFVB is a promising avenue for fast inference in
Bayesian models and demonstrates that this usefulness extends to multivariate generalized linear mixed
models.
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Fig. 2. Model results for a 12 marker multivariate generalized linear mixed model in the diabetic retinopathy. Panel
(a) shows the accuracy heat maps of the MFVB fixed effects estimates and residual standard deviations (compared
to the MCMC estimates), (b) shows the accuracy of the MFVB random effects covariance matrix (compared to the
MCMC estimates), and (c) shows the implied matrix of correlations between the 12 longitudinal markers calculated
using MFVB.

We have demonstrated through simulation studies and through application to clinical data sets that
MFVB offers significant time gains over MCMC, although sometimes with the cost of less accurate
estimation of covariance. This could be of use in early exploration of model fits, where assessing multiple
competing models is prohibitive if models take days rather than minutes/hours to fit. MFVB could also
be used to obtain good starting points for MCMC based inference, in an attempt to speed up MCMC
procedures. However, we believe our article demonstrates that for many outputs of interest, MFVB provides
good estimates in its own right.

Future work should investigate ways to improve the speed of MFVB algorithms further, without losing
accuracy in the estimation of posterior distributions. One possible avenue for pursuing this could be through
model reparameterization which Tan (2021) shows can improve both accuracy and speed of convergence.

We have demonstrated our MFVB approach in two clinical data sets. Although the diabetic retinopathy
data consists of data on 12 longitudinal markers for 17 682 patients, this number is potentially small in
comparison to the data increasingly available form sources such as electronic health records, where data
may be held on hundreds of thousands of patients, with many more than 12 longitudinal markers.Although
MCMC is slow in the diabetic retinopathy application (with the 12-marker model taking more than 2.5
days to fit), it is still at least feasible. This would not be the case in the much larger data sets available
through electronic health records.

In this article, we have shown that MFVB can give accurate parameter estimates in much faster times,
which gives confidence that they could do so in settings where MCMC was computationally infeasible.
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Fig. 3. Fitted longitudinal markers for mean field variational Bayes (dashed lines) compared to MCMC (solid lines)
for the 12 markers in the diabetic retinopathy data, for three patients. The orange stars, green dots, and blue triangles
show the observed values for three different patients, with the respectively colored lines showing the fitted models
for each individual. All continuous values, including time, have been scaled prior to analysis and the results plotted
here are in terms of the scaled variables. The y-axis of each plot shows the scale version of the variable noted in the
title of each panel. The original units for each variable can be found in the description at the start of Section 5.

In this case, it is desirable to have some indication about how good an MFVB approximation is. Two
promising post hoc diagnostic tools have been proposed to assess goodness of fit by Yao and others
(2018). The first assesses the goodness of fit of the joint distribution (i.e., how close is q(θ) to the
true p(θ |y)), interpreting the shape parameter from Pareto smoothed importance sampling as the Renyi
divergence between q(θ) and p(θ |y), with small divergences indicating good fit. This approach offers the
interesting prospect of correcting MFVB estimates post analysis and would be a profitable avenue for
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further research. The second diagnostic proposed is a variational simulation based calibration diagnostic
that assesses the average performance of point estimates from an MFVB approximation.

The applications to primary biliary cirrhosis and diabetic retinopathy data in this article were for the
purposes of illustration. One may also wish to consider the influence of many other covariates on the
longitudinal profiles of various markers. This is perfectly possible within the algorithm presented in this
article. Similarly, as not all markers are measured at each time point, there could well be information
simply in the fact that a marker was measured. Additional work could be done to model this informative
observation. This was outside the scope of this article and would be an interesting avenue for future work.

The problem of poorly estimated covariance matrices observed in this article is a well-known problem
with MFVB algorithms. How much of a problem this is depends on what a researcher wants from a
model. If estimates of posterior means are required then MFVB can provide very good estimates. Equally,
if the MGLMM is to be used for prediction or classification (e.g., Hughes and others, 2018) then fast
and accurate estimate of posterior means may be sufficient. If a more accurate assessment of variability
is required, then more work is required. One promising area we are currently investigating is the use of
linear response variational Bayes to correct MFVB variance estimates (Giordano and others, 2015).

Although we have shown in this article that MFVB can provide a very useful modelling tool in complex
longitudinal models, there is no guarantee that MFVB will always provide a good solution. Much depends
on how much correlation is ignored in the mean field product restriction. Additionally, Nolan and Wand
(2017) show that the amount of posterior correlation between regression parameters can affect the per-
formance of MFVB. Other features of a problem, unrelated to MFVB specifically, such as the number of
repeated measurements per individual, and the sample size in general will likely contribute to the quality
of a MFVB approximation.

Overall, MFVB offers a fast and useful alternative to MCMC for scalable Bayesian inference in complex
longitudinal data.

7. SOFTWARE

Software in the form of R code, together with a sample input data set and complete documentation is
available on request from the corresponding author (dmhughes@liverpool.ac.uk). Code to reproduce the
PBC analysis is available on GitHub at https://github.com/dmhughesLiv/VariationalBayes

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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