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 On nonparametric discrimination using

 density differences

 BY PETER HALL AND MATTHEW P. WAND

 Department of Statistics, Australian National University, Canberra, ACT 2601, Australia

 SUMMARY

 We propose a technique for nonparametric discrimination in which smoothing param-

 eters are chosen jointly, according to a criterion based on the difference between two

 densities. The approach is suitable for categorical, continuous and mixed data, and uses

 information from both populations to determine the smoothing parameter for any one

 population. In the case of categorical data, optimal performance is sometimes achieved

 using negative smoothing parameters, a property which does not emerge if the smoothing

 parameters are chosen individually.

 Some key words: Categorical data; Continuous data; Cross-validation; Density difference; Density estimate;

 Discrimination; Kernel estimate; Likelihood ratio.

 1. INTRODUCTION

 The common approach to nonparametric discrimination, using either continuous or

 categorical data, is to construct nonparametric density estimators for individual popula-

 tions and combine them using a likelihood ratio rule. For example, suppose we wish to

 discriminate between X and Y populations. Let fx and f, be the respective true

 probability densities, and let p be the prior probability that an unclassified observation

 z is from population X. The 'ideal' rule is to assign z to X if and only if

 fx (Z)Ify (z) ?- (I -p)/p. (-1

 If fx and fy are unknown then they are usually replaced by estimates fx and fy, whose

 construction depends crucially on respective smoothing parameters hx and hy. The value

 of hx is chosen to minimize the distance betweenfx and fx, and hy is chosen to minimize

 the distance between fy and fy. We classify z as coming from X if and only if

 A A

 fx (Z)/fy(Z) > (1 -p)/p. (1-2)

 In the present paper we suggest the following alternative approach. Notice that

 inequalities (1 1) and (1 -2) are equivalent to g(z) , 0 and A(z) 0, respectively, where

 g- Pfx -(1 -p)fy5 g-pfx-(1- -)fy.

 One can select hx and h, jointly, rather than separately, to minimize the distance between

 g and g. Following that, a natural discrimination rule is to assign z to population X if

 and only if,g(z) ?O.
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 542 PETER HALL AND MATTHEW P. WAND

 This procedure uses data in training samples from both populations to determine the

 smoothing parameter in a density estimate for any one population. That is an attractive

 feature, since data from each population provides information which is helpful in

 discriminating against the other, and which should be incorporated into both density

 estimates.

 We use the L2 metric to measure the distance between g and g, and employ a variant

 of squared-error cross-validation as a tool for minimizing this distance. The criterion

 which we minimize numerically is a continuous function of the smoothing parameters.

 In this respect our approach has an advantage over rules which minimize an estimate of

 error rate (Tutz, 1986). The estimate of error rate is a discontinuous function of smoothing

 parameters, and itself requires smoothing for effective implementation. Nevertheless,

 Tutz's criterion does have a direct and very important meaning in terms of the discrimina-

 tion problem.

 In principle, a version of our procedure may be used to select smoothing parameters

 which minimize mean squared error of fl/fY or fl/f,. However, such a technique is

 hardly practicable, because of serious problems when the denominator is close to zero.

 It is influenced far too greatly by cells with low counts, in the discrete case, or by tail

 properties of f,, and f, in the continuous case.

 Although our density estimators are constructed according to a criterion based on the

 difference between two densities, they are consistent and have smoothing parameters

 which are not radically different from those which would normally be employed to

 compute estimators of individual densities. For example, if we are using nonnegative

 kernel estimators with continuous univariate data, then smoothing parameters which are

 'optimal' for individual densities and for density differences are all asymptotic to constant

 multiples of n `15, only the constants being different. Section 2 discusses our approach

 in the case of categorical data, and ? 3 treats continuous data. There is no difficulty using

 our method in other cases, for example with categorical data estimates (Wang & Van

 Ryzin, 1981), orthogonal series estimates for discrete data (Ott & Kronmal, 1976), and

 estimates for mixed data (Krzanowski, 1980; Vlachonikolis & Marriott, 1982; Hall, 1983).

 The traditional approach to nonparametric discrimination, in which smoothing param-

 eters are determined separately rather than jointly, is surveyed and analysed by Hand

 (1981, 1982). More recent work includes contributions by Titterington et al. (1981), Hand

 (1983), Krzanowski (1983), Lauder (1983) and Butler & Kronmal (1985).

 2. CATEGORICAL DATA

 In this section we assume that the sample space is the binary space {0, I}d, that is the

 set of all d-tuples of zeros and ones. It may be thought of as representing the set of all

 possible responses to d questions, for each of which the answer is 'yes' or 'no'. Our

 techniques also apply to other types of categorical data, such as unstructured multinomial

 data.

 Assume that we have training samples X1, . . . , Xm from the X-population and

 Y1, . . , Yn from the Y-population, and that these samples are independent. Let fx " fy,

 I>, fy, g, g and p be as in ? 1. Given a vector x (x(1), .. ., x(d)) of zeros and ?ones,

 put lxl = XJx1')|. Let

 fx, (Z) E fx (x)

 x: x-zI=1

 denote the sum of fx-probabilities in cells distant one unit from cell z, and define fy,(z)
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 Nonparametric discrimination using density differences 543

 analogously. Density estimates based on X and Y training samples are

 fx(zlx hx)=m1 hlx il(I-hx)d-ZX,

 i=l

 (2.1)

 A ~~~~~n

 fY(z|hy)-n E hlyYil(l -hy )d-IZ-Y11 fy(zlhy) =n-1 E hly1'(

 i=1

 respectively (Aitchison & Aitken, 1976). Taking hx = 0 reproduces relative frequencies

 of the X-sample, and h, = 0 has the same effect for the Y-sample.

 A little algebra along the lines described by Hall (1981) and Bowman, Hall & Tittering-

 ton (1984) shows that, as m and n increase, the values of hx and hy which minimize

 z E{IA(z)- g(z)}2 converge to zero and satisfy

 hx - hxo (TxxTyy- Txy)-1(Tyym-1Sx +pTxyn-1Sy), (2-2)

 h y - hyo( TxxTyy - Ty) 1(Txxn-'Sy + p-' Txym Sx) (2-3)

 provided TxxTyy - T where p_p- 1,

 Txx-- (fx, l-f 2Ty-f f -f

 TXy--fi (fx, - dfx )(fy - dfy),

 Sx=d +E,(fxl - dfx )fx5 Sy=-d + ,fY,I - dfy)fy.

 An intriguing aspect of formulae (2 2) and (2-3) is that one or other of the 'optimal'

 smoothing parameters hx,0, hyo0 can be negative. For example, take d = 2 and let fx, fY

 be given by

 fx(0?,0) =fy(1, 0) = 01,, fx(0, 1) =fy(1,1) = 02,,

 fx(1,0) =fy(0,0?) = 03,, fx(1l 1) =fy(0, 1) = 04.

 Then

 x =345(5m-1 -3pn-1),, hy =435(5n-1 -3p-1m-1)-

 If 5n <3pm then hxo <0, and if 5pm <3n then hy0 <0.

 A negative smoothing parameter means that, when large numbers of observations in

 neighbouring cells appear to suggest that the probability in the present cell should be

 weighted up, it is actually weighted down. This is not so absurd as might at first appear.

 We are estimating the difference between two densities, and not an individual density.

 If a cell z, distant one unit from cell zo, makes a positive contribution to an optimally

 constructed estimator of fy(zo), then it will make a negative contribution to that estimator

 of pfx (zo) - (1 - p)fy (zo) which is obtained by simply subtracting estimators of fx (zo)

 and fy(z0). This may well be suboptimal, particularly if an accurate estimator of fx(z0)

 assigns a large positive weight to data from cell z. However, note that a negative smoothing

 parameter leads to kernel weights which oscillate in sign as the distance from the cell at

 which the estimator is evaluated increases.

 Minimizing :z E{g(z) _ g(z)}2 is equivalent to minimizing

 A(hxl, hy) 2z E pfx(z E hx) - (( hp)fy(z ) hy2

 -2 z pf ZEfx (z I hx ) + (I _2Y(Z) Efy(z |hy)
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 544 PETER HALL AND MATTHEW P. WAND

 An unbiased estimate of A(hx, hy) is

 A(hx, hy) {pfx(z I hx) - (1 _p)fy(z I hy)}2

 m A nA

 -2 P 2m-i E fx,i(Xi I hx ) + (I _ p)2 n_1 E t,j( Yi I hy)

 i=L i=1

 -p(, l-p) {m -lEf y(Xi I h y) + n1 l fx ( Yi I hx ) } ](2-4)

 where

 fxi(z I hx) (m - 1)i hix I (1- hx)dII,

 jti

 fy,(z I hy) (n - 1)-i E hly (1 - hy)I .

 jti

 A A A

 A practical procedure is to choose (h , hy) to minimize A(hx, hy). An unclassified

 observation z may then be assigned to population X or Y according as

 Pfx hx)-(I-p)fy h y) ? or <0.

 A slight variant of the criterion A(hx, hy) may be arrived at by following a prescription

 based on cross-validation, much as by Titterington (1978, 1980) or Bowman (1984). We

 have settled on A because it is a little simpler than its cross-validatory counterpart,

 although the two are asymptotically equivalent. The argument which postulates A because

 it is an unbiased estimator of A, is close to ones given by Rudemo (1982) and Brown &

 Rundell (1985) in related settings.

 An alternative approach is to insist from the outset that hx = hy. Then the 'optimal'

 window is asymptotic to

 m-1{d +3fx(fxj1 - dfx)}+ n1p2{d +3fy(fy1 - dfy)}

 ho=E{f,- dfX)_-p(fys -_dfy}

 as m and n increase. A practical procedure for choosing the smoothing parameter in this

 circumstance is to minimize A(h, h), given by (2-4) with hx = hy = h. Another variant is

 to minimize Ez E{(z) - g(z)}2w(z), for a weight function w. A slight modification of

 the function A(hx, hy) produces an adaptive version of this criterion.

 An argument similar to that given by Bowman et al. (1984) shows that, as m, n - ,

 the smoothing parameters (hx, hy) which minimize A(hx, hy) satisfy hx/ hx - 1 and

 hy/hy -> 1 in probability, where hx and hy are given by (2-2) and (2-3). In this sense,

 our adaptive criterion produces asymptotically optimal smothing parameters. Analogous

 results hold under the restriction hx = hy.

 We applied the binary kernel estimates, defined at (2 1), to data from Anderson et al.

 (1972) on diagnosis of keratoconjunctivitis sicca, KCS. The X-sample comprises m = 40

 KCS patients, and the Y-sample contains n = 37 non-Kcs patients. We took p = 2. Table

 3 I1(a) lists smoothing parameters (hx, hy) obtained by: (i) minimizing A(hx, hy), defined

 at (2-4); (ii) applying squared-error cross-validation to X- and Y-samples individually;

 and (iii) applying likelihood cross-validation to X- and Y-samples individually, as

 Aitchison & Aitken (1976).

 Each method was then tested by omitting one observation from the training set in turn

 and using the reduced set to classify the omitted observation. Table 3 -(b) lists the errors

 incurred by each method. When viewed in this light, for this data set, method (i) performs

 in between methods (ii) and (iii).
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 Nonparametric discrimination using density differences 545

 Table 3-1. (a) Smoothing parameters, (b) total misclassifications obtained by

 'leaving-one-out' method

 (a) (b)

 No. misclass. No. misclass.

 hx hy from X from Y

 (i) 02161 00124 (i) 4 2

 (ii) 01950 0*0083 (ii) 4 3

 (iii) 01570 00400 (iii) 4 1

 Method (i) minimizes A(hx, hy), defined at (2-4); method (ii), squared-error cross-validation

 applied to X- and Y-samples individually; method (iii), likelihood cross-validation applied to

 X- and Y-samples individually.

 3. CONTINUOUS DATA

 Again suppose that we have training samples X1, ... , Xm from the X-population and

 Y1, . . ., Y,, from the Y-population, and that these samples are independent. Assume that

 the data are d-variate, and let K be a d-variate kernel function. Write h = (hl, . . ., hd )

 for a d-variate smoothing parameter, define x/ h to be (x1/hll ..l, Xd/hd) for vectors

 x (xi, . . ., Xd), and put

 d -1m

 fxA (zlh)-(m nF hi) K{(z- Xj)h},

 i=l =

 A ~d -1n

 fy(z I h)-n I I hi ,K{(z - Yi)/ h},

 fx i(z I h) {(m - 1) H hj} K{(z-Xj)/h},

 j=I j$i

 fyi(zEh)={(n -1) H hj} E K{(z - Yj)/ h}.

 j=1 j*i

 See Prakasa Rao (1983, Ch. 2, 3) for details of nonparametric density estimation with

 continuous data. A very important special case of these estimates is that in which each

 component hi is identical. There it is usual to standardize each component for scale.

 Following the argument leading to (2-4) we see that on the present occasion our

 adaptive criterion is

 A(hx, hy)--J {pfx(z I hx) (Ip)fy(z I hy)}2dz

 m n

 -_2 P2M-1 E Xi(Xi I hX ) + (I _p)2 n-1 E y fYi( Yi I hy)

 i=1 i=1

 m ~~~~~~~nZ

 -p(l?j Efy(X~i |hy)+ n 1 E fx(Yi I hx)

 The integral on the right-hand side may be calculated explicitly if the standard normal

 kernel is used. The pair (hx; hy) which minimizes A(hx, hy) is asymptotically optimal

 in the sense of minimizing the L2 distance between g and g. That is,

 D(hx, hy)

 inf D(hx, hy)
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 546 PETER HALL AND MATTHEW P. WAND

 almost surely as m, n -> oo, where

 D(hx, hy) { {g(z) - g(z)}2 dz

 [Pfx (z hx) - (1 _p)fy(z I hy) - {pfx (z) - (1 -p)fy(z)}]2 dz.

 This result may be proved essentially by the arguments of Stone (1984). Regularity

 conditions are that J g2 < co, that fx and fy and their one-dimensional marginals are

 bounded, and that the kernel is compactly supported, symmetric and Holder continuous.

 Conditions on the kernel may be relaxed by following Hall (1985).

 By focusing on the difference between two density estimates rather than on their ratio,

 we circumvent difficulties caused by negative density estimates. It is well known that

 estimates with particularly fast rates of convergence are sometimes negative (Prakasa

 Rao, 1983, p. 42 ff), but such estimates can be difficult to interpret if discrimination is

 based on a ratio rule.

 We applied our kernel estimates to two discrimination problems. The first involved

 synthetic data. The X-population had the standard normal density while the standard

 Cauchy density was chosen for the Y-population. We simulated 50 training samples,

 each with m = n = 50, assumed equal prior probabilities, and used the standard normal

 kernel. For each training sample we calculated estimates of (hx, hy) using (i) minimization

 of A(hx, hy), and (ii) squared-error cross-validation applied to the X- and Y-samples

 separately. Kullback-Leibler, or likelihood, cross-validation is not a viable alternative

 here (Schuster & Gregory, 1981; Bowman, 1984, 1985). For each of the 50 replications

 the error or misclassification rate for each rule was then estimated by generating 10 000

 new observations from each population and counting the number of misclassifications.

 In 30 out of 50 of the cases the rule based on method (i) produced a lower estimated

 error-rate than the rule based on method (ii). The average error rates were 38-99% and

 39-75%, with standard errors 0O18 and 029.

 The second problem used trivariate data on skull measurements, respectively basilar

 length, occipotonasal length and palatilar length, of the kangaroo species M. giganteus.

 See Table 53.1 of Andrews & Herzberg (1985). There were 25 males and 25 females.

 Each component of each data triple was rescaled so that it had unit sample standard

 deviation, and we analysed the data by taking each component of hx to be identical and

 each component of hy to be identical. To test the 'joint smoothing' method against

 'individual smoothing' we made 50 passes of 50 data triples, leaving out one observation

 each time. We discriminated the omitted observation using the remaining 49 triples. The

 methods performed similarly, with joint smoothing misclassifying 18 kangaroos out of

 50 and individual smoothing misclassifying 19.
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