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On the Accuracy of Binned Kernel Density Estimators
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The accuracy of the binned kernel density estimator is studied for general binning
rules. We derive mean squared error results for the closeness of this estimator to
both the true density and the unbinned kernel estimator. The binning rule and
smoothness of the kernel function are shown to influence the accuracy of the binned
kernel estimators. Our results are used to compare commonly used binning rules,
and to determine the minimum grid size required to obtain a given level of
accuracy. � 1996 Academic Press, Inc.

1. Introduction

An important recent contribution to the practical application of kernel-
type estimators is the idea of prebinning the data on an equally spaced
mesh and then applying a suitably modified kernel estimator to the binned
data. This approach results in what is usually referred to as the binned or
WARPed (an acronym for weighted averaging using rounded points) version
of the kernel estimator and leads to substantial computational savings
compared to the direct computation of kernel estimators; see Silverman
(1982), Scott (1985), Ha� rdle and Scott (1992), Fan and Marron (1994),
and Wand (1994). Binned kernel estimators are also appropriate for the
common situation where the data are only available in a discretised format.

A question of considerable practical relevance concerns the accuracy of
kernel estimators based on binned data. For simplicity's sake we will treat
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the problem of estimating a probability density function f, although the
main ideas are directly applicable to other settings such as nonparametric
regression. Let f� be a binned kernel density estimator for f (defined in
Section 2) and f� be the ordinary kernel density estimator. The accuracy of
f� can be assessed in two different ways. The first arises from treating f� as
an estimator of f in its own right, and studying its estimation proper-
ties��as has been traditionally done for ordinary kernel estimators. The
second concerns the closeness of f� and f� . This is worthwhile because f� is the
more natural and mathematically tractable of the two density estimators
while, for reasons of speed, f� is the more appropriate estimator to use in
practice.

In this article we investigate both measures of accuracy. In either case,
the accuracy is shown to depend quite heavily on the rule used to bin the
data. Various binning rules are discussed in Section 2. The presentation is
facilitated through the characterization of a binning rule through a
``binning kernel'', that has similarities with the usual kernel function.

The properties of f� as an estimator for f are given a comprehensive
treatment in Section 3. This is in the spirit of earlier work by Hall (1982),
Scott and Sheather (1985), and Jones (1989), but it goes beyond their work
by deriving concise asymptotic approximations rather than order-of-
magnitude upper bounds. An important component of our results, not fully
recognized by previous authors, is the effect of the smoothness of the kernel
on the asymptotic performance of f� . This is in contrast to ordinary kernel
density estimation where smoothness properties of the kernel do not affect
the asymptotics.

In Section 4 we derive results for the distance between f� and f� , generaliz-
ing previous work by Jones and Lotwick (1983). A noteworthy difference
between these results and those of Section 3 is that they do not require the
usual large sample asymptotics. This is because the individual performan-
ces of f� and f� as density estimators are not of interest when measuring their
closeness. Rather we use asymptotics that allow the binning mesh to
become finer while keeping the sample size fixed. The linear binning scheme
proposed by these authors is seen to perform very well in this regard. Our
results also indicate that the goals of the estimation of f and closeness to
f� can be quite different; a binning rule resulting in better estimation proper-
ties of f� does not necessarily lead to improvement in the closeness of f�
to f� .

The massive amounts of computation required for direct kernel estima-
tion of multivariate data provide even greater motivation for the use of
faster binned kernel estimators. In Section 5 we extend our univariate
results to the multivariate density estimation context.

In practice f� is usually computed over a finite number of grid points. The
choice of the size of this grid is very important since it involves a trade-off
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between minimizing the binning error and minimizing the computational
time. In Section 6 we use our approximation results to obtain minimum
grid sizes to achieve a prescribed accuracy. Our results give theoretical
support for commonly used ``rules of thumb'' for choosing the grid size. For
example, grid sizes up to about 500 grid points are seen to be adequate for
most density types and sample sizes that arise in practice.

2. Binned Kernel Density Estimators

2.1. General Approaches to Binning

A binning rule may be represented by a sequence of functions
[wj (x, $), j # Z] and asks that an observed data value X be distributed
among ``grid points'' gj=j$ in such a way that weight wj (X, $) is con-
tributed to gj . If we ask that for each real x and $>0, �j wj (x, $)=1, then
it becomes clear that a binning rule divides each single data value into a
number of parts and assigns them to different grid points. However, this
condition is not always necessary and is violated by the higher order poly-
nomial binning rules described in Section 3.5. We could also insist that
each wj (x, $)�0, although this constraint is rather restrictive. It is like
demanding that a kernel function be nonnegative, and that does exclude
methods that are of both practical and theoretical interest.

Examples of binning rules include simple binning, where

wj (x, $)={1
0

if x # (( j& 1
2) $, ( j+ 1

2) $],
otherwise;

and common linear binning, where

wj (x, $)={1&|$&1x&j |
0

if |$&1x&j |�1,
otherwise.

Most binning rules wj (x, $) can be characterized through the function
W(x)#w0(x, 1). The rule can then be written in terms of W as
wj (x, $)=W($&1x&j ). Asymptotic unbiasedness of the binned kernel
estimator requires that � W=1. Also the order of the bias depends on the
number of zero moments possessed by W; see Section 3.1. Because of its
close analogy with the kernel of ordinary kernel density estimation we will
call W the binning kernel associated with the binning rule wj (x, $). Figure
1 shows binning kernels for the two common binning rules described
above, as well as an alternative ``fourth-order'' linear binning rule that we
describe in Section 3.5.
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Fig. 1. Binning kernels for (a) simple binning. (b) common linear binning, and (c) fourth-
order linear binning.

2.2. Application of General Binning to Kernel Density Estimation

Let k�2 be an integer and let K be a bounded function, integrable
against kth-degree polynomials and enjoying the property that

1 if j=0,

| u jK(u) du={0 if 1�j�k&1,

k! }{0 if j=k.
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In keeping with standard terminology we call K a k th-order kernel.
Silverman (1986, p. 66ff) has discussed the use of such kernels in density
estimation. An unbinned kernel estimator of a density f, based on a ran-
dom sample X1 , ..., Xn drawn from the population with density f, may be
written as

f� (x; h)=n&1 :
n

i=1

Kh(x&Xi ), &�<x<�,

where Kh(u)=K(u�h)�h. To reduce the computational labour in calculating
f� ( } ; h) we may first bin the data, using a rule such as those discussed in
Section 2.1, and then employ the resulting summary statistics to calculate
an approximation to f� :

f� (x; h)=n&1 :
j # Z

NjKh(x&j$),

where Nj=�n
i=1 wj (Xi , $) denotes the ``count'' at grid point gj . Note that

Nj may be negative or nonintegral.

3. Accuracy of f� as a Density Estimator

3.1. Effect of Binning on Bias

A typical binning rule produces an expansion of the form

E [wj (X, $)]=$ f ( j$)+c1$2 f $( j$)+c2 $3 f "( j$)+ } } } , (3.1)

where

ci=(i !)&1 | ziW(z) dz.

Simple binning has c1=0 and c2= 1
24 . Since even simple binning has

c1=0 then it is unlikely that one would ever employ a binning rule which
had c1{0. Common linear binning has c1=0 and c2= 1

12 . A binning rule,
based on fitting a polynomial of degree m&1, may be constructed so that
c1= } } } =c2m&1=0; see Section 3.5 for examples.

Let cs denote the first nonzero ci . We will call s the order of the binning
rule since its corresponding kernel is a sth-order kernel function. Assume
that K is continuous, and K (2t&1) exists at all but a finite number of points
and is piecewise continuous with only a finite number of discontinuities, at
each of which both left-hand right-hand limits are well defined.
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Assume that f has max (s, 2t&1) continuous derivatives, and that
$=o(h); that is, bin width is of smaller order than bandwidth. We shall
show in Appendix A that

E[ f� (x; h)]&E[ f� (x; h)]

=cs$s f (s)(x)+($�h)2t a(x, $, h)+o[$s+($�h)2t], (3.2)

where the function a(x, $, h) is bounded and is determined by the jumps of
K (2t&1). If there are no jumps then a( } , $, h)#0. For example, if x is a grid
point and if the jumps occur at points y such that hy is a grid point then

a(x, $, h)=&[(2t)!]2t f (x) J(K (2t&1)), (3.3)

where J(K (2t&1))#�x [K (2t&1)(x+)&K (2t&1)(x&)] denotes the sum of
the jumps of K (2t&1) and Bj is the j th Bernoulli number.

To appreciate the implications of this result, let us suppose that the
kernel K is of order k, as defined in Section 2.2, and that f has k continuous
derivatives. Then

E[ f� (x; h)]&f (x)=}hk f (k)(x)+o(hk) (3.4)

as h � 0, where }=(&1)k (k!)&1 � ukK(u) du{0. See Silverman (1986, p.
67ff) for discussion of results such as this. Substituting (3.4) into (3.2) we
see that if the bias of the binned estimator f is to be no larger than that
of the unbinned estimator then, in addition to $=o(h), we need

$s+($�h)2t=o(hk). (3.5)

(In theory we might hope that O(hk) on the right-hand side would suffice,
but practical considerations suggest that the left-hand side should be of
smaller size than hk.) Second-order kernels, i.e., those with k=2, are by far
the most common in practice, and so, since we always have s�2 (see the
comments just below (3.1)) then the relation $=o(h) implies $s=o(hk). In
this case, (3.5) is event to ($�h)2t=o(hk), i.e., to $=o(h1+[k�(2t)]). The com-
monly used Epanechnikov kernel K(x)= 3

4 (1&x2)+ has k=2 and t=1,
and for this we require that $=o(h2) if binning is not to have a significant
effect on the bias of a kernel density estimator.

3.2. Special Case o f a Very Smooth Kernel

For infinitely differentiable kernels, such as the standard normal kernel,
t may be chosen arbitrarily large. Provided that $=O(h1&=) for some =>0
(no matter how small) and f has sufficiently many derivatives (that number
depending on s and =), the second and third terms on the right-hand side

170 HALL AND WAND



F
ile

:6
83

J
15

80
07

.B
y:

B
V

.D
at

e:
29

:0
2:

96
.T

im
e:

12
:5

6
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

29
67

Si
gn

s:
19

83
.L

en
gt

h:
45

pi
c

0
pt

s,
19

0
m

m

of (3.2) can be made of smaller order than $s by simply choosing t
sufficiently large. (Note that if K is infinitely differentiable then J(K (l))=0
for each l. This argument does require a sufficiently smooth density f.) In
this case, (3.2) reduces to

E[ f� (x; h)]&E[ f� (x; h)]=cs$s f (s)(x)+o($s). (3.6)

Therefore, there can be distinct advantages in using smooth kernel
functions.

3.3. Special Case o f a Very Rough Kernel

In Section 3.1 we assumed that K is continuous. The conclusions drawn
there are not valid without this condition. Discontinuous kernels are rarely
used in practice, except for the uniform kernel, K(u)= 1

2 if |u|�1 and
K(u)=0 otherwise. In this case (3.2) should be replaced by

E[ f� (x; h)]&E[ f� (x; h)]= 1
2 $h&1(2j+1&2h$&1) f (x)+o($h&1), (3.7)

where 2j=j2&j1 and j1 and j2 are, respectively, the least and greatest
integers j such that |x&j$|�h. Note particularly that 2j+1&2h$&1 is of
size 1, being bounded away from zero and infinity along a subsequence, but
does not converge as $h&1 � 0. Therefore, the difference between
E[ f� (x; h)] and E[ f� (x; h)] is genuinely of size $h&1. A proof of (3.7) will
be given in Appendix B.

The quantity $h&1 can be quite large unless $ is small, and it may be of
larger order than the bias of the unbinned estimator. If K is the uniform
kernel then, in order for the difference between E[ f� (x; h)] and E[ f� (x; h)]
to be of smaller size than E[ f� (x; h)]&f (x), it is necessary and sufficient
that $=o(h3). In practical applications this condition can demand a
relatively large number of bins. This phenomenon is illustrated through
examples by Fan and Marron (1994).

3.4. Effect of Binning on Variance and Mean Squared Error

The variance of the unbinned estimator is well known to be given by

Var[ f� (x; h)]=(nh)&1 \| K2+ f (x)&n&1 f (x)2+o(n&1) (3.8)

(see Scott, 1992, p.131) while the difference between the variances of the
binned and unbinned estimators has the property

Var[ f� (x; h)]&Var[ f� (x; h)]=O[(nh)&1 [$s+($�h)2t]] (3.9)

171BINNED KERNEL DENSITY ESTIMATORS
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under the conditions, and in the notation of Section 3.1. (The proof is
similar to that in Appendix A). Since $=o(h) then (nh)&1 $s=o(n&1), and
so (3.8) and (3.9) together give

Var[ f� (x; h)]=(nh)&1 \| K2+ f(x)&n&1 f(x)2+O[(nh)&1 ($�h)2t]+o(n&1).

(3.10)

Whether or not the term (nh) &1 ($�h)2t is of smaller order than n&1, and
so may be dropped from (3.10), depends of course on the sizes of $ and h.
It cannot generally be omitted, and so it is not always true that the varian-
ces of f� ( } ; h) and f� ( } ; h) agree up to terms of order n&1, i.e., to second
order. However, if h is of a size which optimizes the performance of the
unbinned estimator, and if $ is chosen so that the biases of the binned and
unbinned estimators agree to first order, then the variances of the binned
and unbinned estimators agree to second order. To appreciate why,
observe that the first of these stipulations requires that bias of the unbinned
estimator be of size (nh)&1�2 and for the second that ($�h)2t=o[(nh)&1�2].
Therefore, (3.10) reduces to

Var[ f� (x; h)]=(nh)&1 \| K2+ f (x)&n&1 f (x)2+o(n&1);

compare (3.8).
In any event, the impact of binning is almost entirely through its effect

on bias, as discussed in Sections 3.1�3.3. By combining (3.10) with
appropriate bias formulae (see (3.2), (3.4), and (3.6), for example) we may
deduce expansions for mean squared error; and by formally integrating
those expressions we may obtain formulae for mean integrated squared
error. (Formal integration is valid under a variety of regularity conditions,
of which the simplest is that f have compact support, as well as satisfy the
appropriate smoothness assumptions.) In particular, in the context of (3.2)
we have the formula

| E[ f� ( } ; h)&f ]2=(nh)&1 | K2&n&1 | f 2

+| [}hk f (k)+cs$s f (s)+($�h)2t a( } , $, h)]2

+o[n&1+[hk+$s+($�h)2t]2]+O[(nh)&1($�h)2t]
(3.11)

172 HALL AND WAND
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for mean integrated squared error of the binned estimator, which compares
with

| E[ f� ( } ; h)&f ]2=(nh)&1 | K2&n&1 | f 2+}2h2k | [ f (k)]2+o(n&1+h2k)

(see Scott, 1992, p. 133) for the unbinned estimator. In the context of a
very smooth kernel, discussed in Section 3.2, the necessary modification of
(3.11) is simply to drop the terms involving ($�h)2t, obtaining

| E[ f� ( } ; h)&f ]2=(nh)&1 | K2&n&1 | f 2+| (}hk f (k)+cs$s f (s))2

+o(n&1+h2k+$2s). (3.12)

3.5. Polynomial Binning Rules

One polynomial binning rule, quite different from more conventional
binning rules (i.e., simple and common linear rules), is defined by

wj (x, $)={�m&1
i=0 bi |$&1x&j | i

0
if |$&1x&j |�b,
otherwise,

(3.13)

where b>0 is arbitrary and b0 , ..., bm&1 are chosen to ensure that

:
m&1

i=0

(i+2l+1)&1 bi+2l+1bi={
1
2

0
if l=0,
if 1�l�m&1.

The corresponding binning kernel is W(x)=�m&1
i=0 bi |x| i, |x|�b, and is

zero otherwise. This binning rule has order 2m. When m=2 this prescrip-
tion produces a linear binning rule, with b0=3�(2b), b1=&2�b2, and
c4=&b4�15. For the important special case of b=1 the fourth-order
binning rule has binning kernel

W(x)= 3
2&2|x|, |x|�1 (3.14)

(see Fig. 1). This linear binning rule has a weight function which takes
negative values. That is certainly a drawback, but of course it is necessary
if we are to achieve s=4. The common linear binning rule described in
Subsection 2.2 has the property that, of all binning rules constructed
according to (3.13) with m=2 and b=1, and satisfying (3.1) and wj�0, it
has the smallest value of c2 .

3.6. Comparison with Hall (1982) and Scott and Sheather (1985)

Hall (1982) provided upper bounds to the effect of binning on bias and
mean squared error. Later authors have interpreted his work as describing

173BINNED KERNEL DENSITY ESTIMATORS
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a ``worst case'' scenario which would not typically arise in practice. In
particular, Scott and Sheather (1985) argued that, under the assumption
that the kernel K is a continuous and compactly supported density, one
may derive the following approximate expansions for mean integrated
squared error of a kernel estimator computed by simple binning:

| E[ f� ( } ; h)&f ]2
& (nh)&1 | K 2&n&1 | f 2+(}h2+c2$2)2 | ( f ")2. (3.15)

(See Proposition 2 of Scott and Sheather, 1985, and note that in the
context of that proposition, k=s=2 and c2= 1

24 .)
Formula (3.15) does not include contributions which can result through

lack of smoothness of K. For example, if K, K (1), K (3), ..., K (2t&1) are
continuous but K (2t&1) has jump discontinuities then (3.15) should be
replaced by (3.11) (with k=s=2); the latter formula correctly allows for
contributions to bias arising from the lack of smoothness of K (2t&1).

As we noted in Section 3.1, the terms omitted from (3.15) can be signifi-
cant in applications. For example, if one uses the Epanechnikov kernel
then the correct version of (3.15) shows that $=0(h2) is necessary and
sufficient for binning to have no asymptotic first-order effect on the perfor-
mance of f� ( } ; h). However, (3.15) suggests that $=0(h) is adequate.

Scott and Sheather (1985) conducted a simulation study which tends to
confirm their conclusions. However, in this numerical work they used the
standard normal kernel, not (for example) the Epanechnikov kernel. As we
noted in Section 3.2, a normal kernel does not produce the same binning
problems as other kernels which satisfy Scott and Sheather's regularity
conditions. Indeed, the mean integrated squared error formula appropriate
for a normal density is simply (3.12) in the case k=s=2; and that is
essentially (3.15).

4. Accuray of One Estimator as an Approximation to the Other

4.1. Motivation

In practice f� is often thought of as an approximation to the idealized
form, f� . In particular, the intuitive argument which leads one to consider
kernel estimation��i.e., to place probability mass about each data value,
and take the average of the masses��applies to f� rather than f� . Moreover,
the vast majority of theory applies to f� rather than f� , and so it is of
particular interest to know how close they are to one another. This
problem may be solved without resorting to the usual large sample
asymptotics, since the individual performances of f� and f� are not of interest.
More meaningful asymptotics result from simply letting the bin width $

174 HALL AND WAND
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approach zero, with n and h fixed. It is difficult to give concise results of
this type for general binning rules, so we will focus on three important
special cases: simple binning (Subsection 4.2), common linear binning
(Subsection 4.3) and the fourth-order linear binning rule having binning
kernel (3.13) (Subsection 4.4).

4.2. Approximation Accuracy of Simple Binning

Suppose that f� is based on the simple binning rule. Assuming that K has
a continuous derivative, Taylor expansion leads to

f� (x; h)&f� (x; h)=$n&1 :
n

i=1

K$h(x&Xi ) Q($&1Xi )+oP($)

as $ � 0, where Q(x)=x&(closest integer to x), &�<x<�. Therefore,
since �1�2

&1�2 Q($&1z)2 dz= 1
12+o(1),

E[ f� (x; h)&f� (x; h)]2=$2n&1 | K$h(x&y )2 Q($&1y )2 f ( y ) dy+o($2)

=$2n&1 | K$h(x&y )2 {|
1�2

&1�2
Q($&1z)2 dz=

_f ( y ) dy+o($2)

=$2(12n)&1 E[K$h(x&X )2]+o($2).

The second line here may be explained intuitively by noting that as $ � 0,
Q($&1X ) converges in distribution to a uniform random variable on
(&1

2 , 1
2) that is independent of X (see, e.g., Hall, 1983, Lemma 3). The

mean squared difference between f� (x) and f� (x) is therefore of order $2 as
$ � 0. Under appropriate integrability conditions we obtain

E | ( f� &f� )2=$2(12nh3)&1 | (K$)2+o($2). (4.1)

A closely related result was derived by Jones and Lotwick (1983).

4.3. Approximation Accuracy o f Common Linear Binning

Suppose now that f� is based on common linear binning. Assuming that
K has two continuous derivatives and noting that

:
j # Z

(X&j$)(1&|$&1X&j | ) I(&1<$&1X&j�1)=0

(here I(E) is the indicator of the event E) we obtain for the common linear
binned kernel density estimator:
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f� (x; h)&f� (x; h)= 1
2 $2n&1 :

n

i=1

K"h(x&Xi ) R($&1Xi )[1&R($&1Xi )]+oP($2),

where R(x)=x��(greatest integer not exceeding x), &�<x<�. Since
R($&1Xi ) converges in distribution to a uniform random variable on (0, 1)
as $ � 0, and independently of X (Hall, 1983, Lemma 3), we obtain

E[ f� (x; h)&f� (x; h)]2=$4[(120n)&1 E[K"h(x&X)2]

+ 1
144 (1&n&1)[EK"h(x&X )]2]+o($4).

Formal integration of this result leads to

E | ( f� &f� )2=$4 {(120nh5)&1 | (K")2+ 1
144(1&n&1) | (K"h V f )2=+o($4),

(4.2)

where V denotes convolution. These results show that, in terms of how
close f� is to f� , common linear binning is asymptotically superior to simple
binning.

4.4. Approximation Accuracy of Fourth-Order Linear Binning

For f� based on the fourth-order linear binning rule we have

f� (x; h)&f� (x; h)=$n&1 :
n

i=1

K$h(x&Xi )[ 1
2&R($&1Xi )]+oP($)

which leads to

E[ f� (x; h)&f� (x; h)]2=$2(12n)&1 E[K$h(x&X )2]+o($2).

Therefore the mean squared difference of f� based on fourth-order linear
binning is asymptotically the same as that based on simple binning.
Together with the results derived in Section 2 this result leads to the
noteworthy conclusion that while the fourth-order linear binned estimate is
a better estimate of f than the common linear binned estimate, its
approximation by f� is worse.

5. Extension to d-Dimensional Data

5.1. Multivariate Binning Rules and Binned Multivariate Kernel Estimators

Multivariate binning rules may be defined by taking the product of the
univariate rules, as follows. Suppose wij (x, $), denotes a univariate rule for
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each 1�i�d. In particular, wij could denote a polynomial binning rule
such as those discussed in Section 4. Henceforth we let j=( j1 , ..., jd),
x=(x1 , ..., xd), and $=($1 , ..., $d) denote d-vectors and define the grid
point gj by

gj=j$#( j1$1 , ..., jd $d).

Put

wd
j (x, $)= `

d

i=1

wij i (xi , $i ),

the ``product'' binning rule based on the wij . A d-variate binning rule
amounts to distributing a data-vector X=(X1 , ..., Xd) among grid-points in
such a way that the amount wd

j (X, $) is assigned to gj . If Wi is the binning
kernel associated with wij then Wd (x)=>i Wi (xi) is the product binning
kernel corresponding to wd

j .
Likewise, d-variate kernel estimators may be defined multiplicatively. Let

K be a k-th order univariate kernel, as defined in Section 2.2; let
h=(h1 , ..., hd) denote a vector of bandwidths and

K d
h(x)=K(x1 �h1) } } } K(xd �hd)�(h1 } } } hd)

denote scalings of the d-variate product kernel Kd (x)=>i K(xi ) by h; and
given a random sample X1 , ..., Xn from a d-variate density f, define

f� (x; h)=n&1 :
n

i=1

K d
h(x&Xi ).

The binned version of this estimator is given by

f� (x; h)=n&1 :
j # Z d

NjK d
h(x&j$),

where Nj=�n
i=1 wd

j (Xi , $).
We shall show in the next subsection that formulae for bias, variance,

and mean squared error in the multivariate case are straightforward
analogues of their counterparts in a univariate setting. Therefore, much of
the discussion in Section 3 of the effects of different binning rules and
different kernel functions, is applicable without change in the multivariate
case. For example, if the Epanechnikov kernel is employed then, to ensure
that binning does not have a significant effect on bias or mean squared
error, each bin dimension (i.e. each $i) should be of smaller order than the
square of the corresponding bandwidth (i.e. h2

i ). Likewise, nonstandard
polynomial binning rules can increase the value of s and so, depending on
the order and smoothness of the kernel, reduce the effect of binning on bias
or mean squared error.
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Fig. 2. Diagrammatic representation of the common linear binning rule when d=2. The
data value at a point X is divided amongst neighbouring grid points according to the relative
areas of opposite rectangles.

It is worth noting the bivariate version of the common linear binning
rule. Given a data value X, construct the rectangle R with vertices corre-
sponding to the grid points that neighbour X. Divide R into four subrec-
tangles by inscribing lines through X, parallel to the sides of R to form four
subrectangles. The weight assigned by X to a neighbouring grid point is the
ratio of the area of the opposite subrectangle to the area of R. This is
illustrated in Fig. 2. The d-variate generalization of this rule, based on the
relative contents of the 2d rectangular prisms induced by X, is obvious.

5.2. Effect of Binning on Bias, Variance and Mean Squared Error

For the sake of simplicity we shall assume that the same binning rule, wj ,
is used for each coordinate. That is, wij=wj , and (with j now denoting a
d-vector) wd

j (x, $)=>i wji (xi , $i ). Let the univariate binning rule and
univariate kernel K have the properties ascribed to them in Sections 2.2
and 3.1. In particular, the functions K, K (1), K (3), ..., K (2t&3) are continuous,
and K (2t&1) has jump discontinuities. The multivariate analogue of formula
(3.2), describing the difference between the expected values of binned and
unbinned estimators, is

E[ f� (x; h)]&E[ f� (x; h)]=cs :
d

i=1

$s
i (���xi)

s f (x) :
d

i=1

($i �hi )
2t ai (x, $i , hi)

+o _ :
d

i=1

[$s
i +($i�hi )

2t]& ,
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assuming that each $i=o(hi ). The multivariate analogue of (3.4), describ-
ing the bias of the unbiased estimator, is well known; it is

E[ f� (x; h)]&f (x)=} :
d

i=1

hk
i (���xi )

k f (x)+o \ :
d

i=1

hk
i +

(see Scott, 1992, p. 150). Formula (3.10), expressing the variance of f� (x; h),
holds as before, provided � K2 is replaced by (� K 2)d. The d-variate
analogue of (3.11), describing mean integrated squared error, is now
obvious.

Analogues of the results described in Sections 3.2 and 3.3, for very
smooth and very rough kernels respectively, are also straightforward. In
particular, for very smooth kernels such as the standard normal or
Student's t, (5.1) simplifies to

E[ f� (x; h)]&E[ f� (x; h)]=cs :
d

i=1

$s
i(���xi )

s f (x)+o \ :
d

i=1

$s
i + .

5.3. Approximation Accuracies o f Multivariate Binning Rules

The results of Section 4 can also be extended to the multivariate setting.
For example, the d-variate extension of (4.1), for simple binning in each
direction, is

E | ( f� &f� )2=(12n)&1 | (K$)2 \| K2+
d&1

:
d

i=1

$2
i h&3

i `
j{i

h&1
j +o \ :

d

i=1

$2
i +

while the d-variate extension of (4.2), for common linear binning in each
direction, is

E | ( f� &f� )2= :
d

i=1

$4
i _(120n)&1 | (K")2 \| K2+

d&1

h&5
i `

j{i

h&1
j

+ 1
144(1&n&1) | {\K"hi `

j{i

Khj+ V f=
2

&+o \ :
d

i=1

$4
i + .

6. Minimum Grid Size Calculations

In practice f� is usually computed over a finite grid on an interval [a, b]
containing the data. Let

M=(b&a)�$+1

be the number of grid points, a quantity that we shall refer to as the grid
size. Since the amount of computing required for computation of f� varies
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directly with the grid size an issue of great practical relevance is that of
how large a grid size is needed for the error due to binning to be ``negli-
gible'' in some sense. It should be noted that there is no absolute answer
to this question, since the amount of binning required to achieve a certain
accuracy can be made arbitrarily large by choosing a density that is
sufficiently wiggly and a sample size that is sufficiently large. Nevertheless,
it is useful to determine minimum grid sizes for a selection of practical
situations.

A convenient way of measuring the error due to binning is through the
relative, mean inteqrated, squared error,

RMISE=E | [ f� ( } ; h0)&f� ( } ; h0)]2�E | [ f� ( } ; h0)&f ]2,

where h0 is the bandwidth that minimizes E � ( f� &f )2. Observe that
RMISE is the ratio of a distance measure between f� and f� to that between
f� and f. Having RMISE equal to a small numbering :, such as :=0.01 or
:=0.001, corresponds to the desirable situation where binning has a small
effect on the overall error involved in the estimation process.

To determine minimum grid sizes we appeal to the ``small $'' results
derived in Section 4. In the case of simple binning, this involves the
approximation

E | [ f� ( } ; h0)&f� ( } ; h0)]2
&$2 | (K$)2�(12nh3

0).

This leads to

M*(:)=�(b&a) _| (K$)2<{12:nh3
0E | [ f� ( } ; h0)&f ]2=&

1�2

+1|
(where WxX is the smallest integer greater than or equal to x) being the
smallest grid size required to approximately ensure that RMISE�:.
Similarly, the approximation (4.2) for common linear binning leads to

M*(:)=�(b&a) _{| (K")2�(120nh5
0)+ 1

144 (1&n&1)

_| (K"h0
V f )2=<{:E | [ f� ( } ; h0)&f ]2=&

1�4

+1| .

Table I lists values of M*(0.01) for simple and common linear binning
rules for each of the fifteen normal mixture densities in Marron and
Wand (1992) if binned density estimates are to be computed over
[a, b]=[&3, 3] with K equal to the standard normal density. Sample
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TABLE I

Minimum Grid Sizes to Achieve 10 Approximate Relative MISE for 15 Example Normal
Mixture Densities

n=100 n=1000 n=10000
Sample size

Density Simple Linear Simple Linear Simple Linear

1 31 16 47 25 71 39
2 32 20 49 32 76 50
3 133 71 268 145 462 253
4 145 77 257 139 419 230
5 276 139 425 224 659 355
6 33 18 55 30 86 47
7 47 25 75 41 118 65
8 38 20 69 38 113 62
9 34 18 63 34 107 59

10 115 62 217 118 359 198
11 30 17 39 25 93 63
12 49 28 148 82 376 206
13 29 17 94 53 214 127
14 67 39 229 127 595 325
15 53 33 255 139 469 257

Fig 3. The fifteen example normal mixture densities.
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sizes are n=100, n=1000 and n=10000. For convenience, the densities
are plotted in Fig. 3. While the measure of accuracy RMISE&10 is some-
what arbitrary, it does represent a situation where binning has little effect
on overall error and allows some important insight into the appropriate
choice of the grid size.

The minimum grid sizes in Table I allow a direct comparison of simple
and linear binning strategies. It is seen that simple binning requires
between about 300 and 700 more grid points to achieve the same
accuracy as linear binning. Therefore, linear binning has a clear-cut advan-
tage over simple binning if economy of number of grid points is desirable.
The results also give an indication of how many grid points one should use
in practice. Surprisingly few grid points are required to achieve the
prescribed level of accuracy for many of the ``smoother'' densities in Fig. 3;
however this number increases considerably for densities having more ``fine
structure''��as well as for larger sample sizes since the smaller optimal
bandwidths demand a finer mesh. For linear binning our results show that
grid sizes of about 400&500 are adequate for a wide range of practical
situations.

APPENDIX A: Proof of (3.2)

In view of (3.1),

E[ f� (x; h)]=I0+c1 $I1+c2$2I2+. . .

=I0+cs$sIs+o($s), (A.1)

where Ii=$ � j gi ( j$) and gi ( y)=f (i )( y) Kh(x&y). Now, g0 , g (1)
0 , ..., g (2t&3)

0

exist and are continuous on (&�, �), and g (2t&1)
0 is piecewise continuous,

with total jump discontinuity given by J(g (2t&1)
0 ). Noting Euler�Maclaurin

summation formulae (see, for example, Abramowitz and Stegun, 1965,
p. 886; Milne-Thomson, l933, p. l87) we may deduce that if x is a grid point
and if the jumps occur at points y such that hy is a grid point then

I0=| g0&[1+o(1)][(2t)!]&1 B2t$2tJ(g(2t&1))

=E[ f� (x; h)]+[(2t)!]&1 B2t$2th&1(&h&1)2t&1

_f (x) J(K (2t&1))+o($2th&2t). (A.2)

Furthermore, Is=f (s)(x)+o(1), so by (A.1),

E[ f� (x; h)]=I0+cs$s f (s)(x)+o($s). (A.3)

Results (3.2) and (3.3) follow on combining (A.2) and (A.3).
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We treat other cases by approximating g0 as follows. Let g denote a
function that is identical to g0 on all bins, where g2t&1

0 has no discon-
tinuities, and equal to g0 at all bin endpoints. Within the closure of those
bins, where g0 has a discontinuity, let g(2t&1) denote a step function with
jumps only at the bin ends. The sizes of those jumps are uniquely deter-
mined by the fact that g has to agree with g0 at the ends. Since g(2t&1) is
a step function then the total jump of g(2t&1) on any one of those bins,
where g (2t&1)

0 has a discontinuity equals that of g (2t&1)
0 there, plus o(1).

Since g has its jumps at grid points then (3.2) applies to it; and since g is
identical to g0 at all grid points then the value of I0 is not affected if g0 in
its definition is replaced by g. It follows that

I0=| g&[1+o(1)][(2t)!]&1 B2t($�h)2t f (x) J(K (2t&1)).

Of course, we wish to replace � g on the right-hand side by � g0 . The
difference, �(g&g0), reduces to the integral of g&g0 over the union of
those bins, where g0 has a discontinuity. By Taylor expansion we may
simplify this to the integral of dt=g(2t&1)&g (2t&1)

0 against a polynomial of
degree 2t&1 which is of size $2t&1 on each bin. Now, the function dt is of
size h&2t, and so the required integral is of size $$2t&1h&2t=($�h)2t. Its
exact value may be worked out in specific cases.

APPENDIX B: Proof of (3.7)

The argument in Appendix A remains valid, except that an alternative
formula should replace (A.2). To derive that formula let j1 and j2 have the
meanings ascribed to them in Section 3.3, and observe that

I0=$ �
j

g0( j$)= 1
2 $h&1 :

j2

j=j 1

f ( j$)

= 1
2 $h&1[ 1

2 f ( j1 $)+f[( j1+1) $]+ } } } +f[( j2 &1) $]+ 1
2 f ( j2$)]

+1
4 $h&1[ f ( j1$)+f ( j2$)]

= 1
2 $h&1 |

j2

j1

f (u$) du+ 1
2 $h&1 f (x)+o($h&1)

=(2h)&1 \|
x+h

x&h
+|

x&h

j1$
+|

j2 $

x+h+ f ( y) dy+ 1
2 $&1 f (x)+o($h&1)

=E[ f� (x; h)]+(2h)&1 [( j2&j1+1) $&2h] f (x)+o($h&1).

Formula (3.7) follows from this result and the argument in Appendix A.
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