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We construct a simple algorithm, based on Newton’s method, which permits 
asymptotic minimization of L, distance for nonparametric density estimators. The 
technique is applicable to multivariate kernel estimators, multivariate histogram 
estimators, and smoothed histogram estimators such as frequency polygons. It has 
an “adaptive” or “data-driven” version. We show theoretically that both theoretical 
and adaptive forms of the algorithm do indeed minimize asymptotic L, distance. 
Then we apply the algorithm to derive concise formulae for asymptotically optimal 
smoothing parameters. We also give numerical examples of applications of the 
adaptive algorithm. 6 1988 Academic Press, Inc. 

1. INTRODUCTION 

The “L, view” of nonparametric density estimation has recently received 
considerable attention, due in large part to the monograph by Devroye and 
Gyiirfi [S]. These authors give a particularly lucid exposition of the 
mathematical attractions of L1 distance: it is always well-defined as a 
metric on the space of density functions; it is invariant under monotone 
transformations; and it is proportional to the total variation metric. 
Devroye and Gyiirfi point out that there are technical difficulties associated 
with L, optimality, and they circumvent these by working with upper and 
lower bounds to L, distance. In the present paper we work directly with an 
asymptotic formula for L, distance. We produce a simple, rapidly con- 
verging, iterative algorithm which permits minimization of L, distance, in 
both theoretical and adaptive (“data-driven”) approaches to the problem. 
This leads to a practical procedure for asymptotic minimization of L, loss, 
which we illustrate numerically. 
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60 HALL AND WAND 

In more detail, our main contributions are as follows. 

(i) We derive a general asymptotic expression for the L, distance 
between a densityfand its estimate x and show that minimization of this 
formula is equivalent to solving an equation L(v) = 0 (u > 0), where L is a 
readily computable, strictly increasing, continuous function with 
L(0) = -co and L( + co) > 0. The equation is easily solved by Newton’s 
method, and so minimization of L, distance reduces to a simple, rapidly 
converging iteration (Section 2). 

(ii) We illustrate the versatility of result (i) by giving versions of the 
function L for general kernel estimators, for histogram estimators, and for 
smoothed histogram estimators in d > 1 dimensions. Other cases, such as 
histospline estimators, may be treated in an identical manner (Section 2). 
Applying the iteration argument in (i), we derive formulae for theoretical 
asymptotically L,-optimal window sizes in the case of kernel estimators 
(Section 4). 

(iii) We develop an adaptive, strongly consistent version of the 
procedure described in (i). This amounts to constructing an “estimate” z of 
the function L, involving only the data and not the unknown density f: The 
estimate 2 has the same basic properties as L, and so the equation e(u) = 0 
is easily solved via a rapidly converging iteration. We prove that the 
resulting adaptive density estimator asymptotically minimizes L, distance 
(Section 3). A numerical illustration shows that the procedure is practicable 
(Section 4). 

Section 2 describes and discusses our general approach to minimizing L, 
distance, Section 3 introduces adaptive techniques, and Section 4 sum- 
marizes numerical results. All proofs are deferred to Section 5. We know of 
no other work which computes explicit formulae for minimum L, distance 
or for asymptotically optimal smoothing parameters. However, formulae 
are available in the case of L2 loss; see Prakasa Rao [ 11, Chaps. 2 and 3). 
Our adaptive methods for minimizing L, distance are distantly related to 
those suggested by Woodroofe [16], in that both are based on “plug-in” 
rules. A further account of minimization of L, distance, including 
application to histogram estimators such as that studied by Scott [13], 
appears in Wand [ 151. 

The case where the smoothing parameter is allowed to depend on 
location, x, is beyond the scope of this paper, although it may be treated in 
a somewhat similar manner. In particular, the equation “L(o) = 0” (see (i) 
above) takes the form “L,(u) = 0” in the location-dependent case, and has 
an adaptive version. Brief details and examples will be given in [9]. 

We close this section with a little notation. A random n-sample from the 
distribution with unknown density S (in d>, 1 dimensions) will be represen- 
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ted by X,, . . . . X,. The uniuariare standard Normal density and distribution 
functions will be denoted by 4 and @, respectively. Unqualified integrals 
will be over either KY’ or R; the case will be clear from context. 

2. ASYMPTOTIC MIMIZATION OF L, DISTANCE 

In this section we show how to minimize asymptotic formulae for L, dis- 
tance in the case of kernel estimators, histogram estimators, and smoothed 
histogram estimators (i.e., first-order histosplines). Our initial exposition is 
tailored to the case of kernel estimators, where relatively simple formulae 
are available for bias and variance. Immediately after that work we 
illustrate our argument with two examples treating general kernel 
estimators. Then we give two examples dealing with general histogram 
estimators, and there we show that only minor modifications to the earlier 
argument are necessary to handle the histogram case. 

Suppose the estimate f of the d-variate density f is so constructed that 
bias and standard deviation are of the same order of magnitude, roughly 
equal to 6 say. If 3 is asymptotically Normally distributed then we may 
write 

f-f=d(b-aZ), (2.1) 

where 6b is asymptotic to the bias of j: Scr is asymptotic to the standard 
deviation, and Z = Z(X) is asymptotically Normal N(0, 1). Of course, this 
representation is far from being unique. For kernel estimators we may 
choose 6, b, and c so that 6 depends only on n, and b and 0 depend only 
on x. In the work below it is convenient to think of the representation as 
having this form. 

In view of (2.1), 

x d(z) d: + o( 1) (2.2) 

as n --f co. Since bias integrates to zero then j b(x) dx = 0, and so the right- 
hand side of (2.2) (excluding the o(l) term) equals 

s s b(x)‘o(J) dx 
Rd -cc 

(b(x) - o(x)zf d(z) dz 

I 5 

* 
- dx 

Rd 
VW - 4-4~) 4(z) dz 

W)la(x) 

= 2 Id dx c’~“’ H-4 - 4x)z} 4(z) dz 

= 2 id +) dx [y:yncr) Q(z) dz 

683/26/l-5 
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Therefore asymptotic L, loss is given by 61, where 

b(.~)lo(x) 
1-2 a(x) dx G(z) dz. 

-m 

In most cases of practical interest, bias and standard deviation can be 
balanced against one another to achieve the “optimum.” This means that 
for some r>O, b(x) =u’bO(x) and C(X) = U-‘o,,(x), where u>O is an 
adjustable parameter not depending on x, and b, and e0 are fixed functions 
of x, not depending on U. Thus, 1 is really a function of U. See the end of 
this section for examples. We show next how to find the value U* which 
minimizes 

l(u) E 2 id a,(x) dx j”“““““‘” @(uz) dz. (2.3) 
-cc 

Noting that Jz < .v z&z) dz = -4(y), we see that 

; l’(u) = id [ j-“‘bo(r)‘uo(x) $(uz) dz + rurp ’ { b,(x)/a,(x)) 
-73 7 

x @W+%(x)/a,(x)~] co(x) dx 
=U -*A(d+l), 

where 

40) = j- 
w’ 

[ r&dx) @Wo(-W,(x)~ -c~ob) ~WobY~,(x)~] dx. 

The “optimal” value U* of u is a solution of the equation n(ur’ ‘) = 0. A 
notable feature of the function /i is that it involves only one integration; 
the function ;1 involved two. 

We show now that the equation /i(u) = 0 has a unique positive solution. 
Put L(u)-u-*n(u), and observe that 

L’(u) = jRd (rb&~,‘~(ub~/o~) + o,u-*~WA&,) + b;o,‘a(ub,/a,)} dx 

= 
I 
Rj{(r+l)b~a,‘+o,u-2} qi(ub,/a,)dx. 

The right-hand side is assuredly positive, proving that L(u) is continuous 
and strictly increasing. Also, L(0) = -co, and as u --, co, 

L(u) = -id [ 4,{ 1 - @(~WJ,)) + ~-lwWo/~o~] dx 

+- I rb,Z(bo < 0) dx > 0. 
Rd 
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Therefore the equation L(o) = 0, and so also A(0 ‘) = 0, has a unique 
positive solution. 

In practice, the equation L(u) = 0 may be solved using Newton’s method, 
as follows. Let 

X 
[J 

Wd~(r+l)b~~g1+60u-Z}~(~b0/00)d~ --I. 1 
If u’ is an approximation to the solution of L(u) = 0 then u” = u’ - H(u’) is a 
better approximation, and the approximations converge rapidly on 
iteration. This method of minimizing L, loss will be used repeatedly in the 
numerical work of Section 4. 

The function A may be written in more homogeneous form as 

Let u* denote the (unique) solution of A(u) = 0. If we are able to alter the 
construction of our estimator j\ in such a way that b, changes to a, b, and 
G,, changes to uzrrO, for constants a, and u2, then we see from the above 
representation of A that u* changes to u*uZ/ul. Since the value U* of u 
which minimizes A(u) is just the solution of A(ur+‘) = 0, then U* changes 
to u*(u*/u*)“(‘+ l) under the transformation. This trite observation is 
important in the case of kernel estimators. It means that once we have 
derived the value of U* for a particular kernel, we can easily lind its value 
for all other kernels of the same “order,” as will be shown in Examples 2.1 
and 2.2 below. 

We now give four examples which illustrate the forms which bO, crO, r, 
and 6 can take. Example 2.1 discusses regularity conditions which are 
sufficient for a rigorous proof of result (2.2). 

EXAMPLE 2.1. General kernel estimator in d = 1 dimension. Put 

f(Xlh)e (nit-’ f K((X-Xj>/h)f 

j= 1 

where K is a pth-order kernel-that is, 1 IzpK(z)l dz < co, K is bounded, 
and 

1 if j=O 

I 

Co 
z’K(z) dz = 0 if l<j<p-1 

--oo 

(-1yc1 #O if j=p, 
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where p B 1 is an integer. If f is bounded and if fip) is bounded and 
continuous then 

&x~h)-f(x)=(c,/p!)h~f’P’(X)+(nh)-1’*c2f(X)”*Z1 +o(hP) (2.4) 

as n + co, h = h(n) --+ 0, and nh + co, where c2 = (j K2)‘12 and Z1 = Z,(x) 
is asymptotically Normal N(0, 1). (See Prakasa Rao [ 11, p. 44ff] or 
Rosenblatt [ 121.) Take h = n-‘lC2p+ ‘)u*, r = 2p, 6 s c~‘(~P+ I), b,(x) E 
(c,l~!)f~~‘(x), and co(x)= c2f(x) . ‘I* Then (2.1) and (2.2) hold with 
bcu’bo and o-~-‘a,. 

Let u$ denote the value of u which minimizes A(u) (defined at (2.3), with 
d= 1 and r = 2~) for a particular pth-order kernel K,. Let co,, and cOT2 be 
the versions of ci and c2, respectively, in the case of this kernel. Then if u* 
is the value of u which minimizes A(u) for any other pth-order kernel, 

u* = ug*{ (co.1 cz)I(c1 co,2))1’(2p+ ‘I, (2.5) 

where cl and c2 are computed for the kernel K. Therefore, once we know 
the value of U* for a particular kernel, we can easily derive it for all other 
kernels of the same order. 

The effect of changing from one pth-order kernel to another is only to 
alter the values of ci and c2. Suppose that after such a change, ci t+uic, 
and c2 H a, c2 for constants a, and u2. Then L, distance, which is 
asymptotic to SAq(u)‘ly, where 

A,(u) E 1 dx jco lu’b,(x) - u-lco(x)zIq 4(z) dz 

(compare (2.2)), changes to-J~~(u)llq, where 

~:(Gj-dxj-~m I ura,bo(x)-u-1u2a,(x)z~qqS(~)dz 

= (a,q/“+‘) 2 q((u,/u2)1”‘+‘h4}. 

Notice that inf, A:(u) = (u~u;)~‘(~+ ‘) inf,l,(u), implying that no mutter what 
the value of q, the optimal kernel is the one which minimizes ala;. For 
example, the Barlett-Epanechnikov kernel [2,6], which is known to be 
optimal in the sense of minimizing L2 distance when p = 2, is also optimal 
in any L, metric (1~ q < co) when p = 2. In particular it is optimal in the 
L, metric. The argument above applies without change to d-dimensional 
kernel estimators, and so the d-dimensional version of the Bartlett- 
Epanechnikov kernel [3] is optimal in any L, metric. 

The easiest way to give a rigorous proof of (2.2), here and in the other 
examples, is to establish “pointwise convergence” of the integrand, that is, 

6-‘E IfW -f(x)1 + jcl lb(x) -4x)4 d(z) dz, for all x, (2.6) 
-00 
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and then prove convergence of the integral by applying a version of the 
dominated convergence theorem. Pointwise convergence is easily proved in 
all four of our examples, under the assumption that fand the derivatives of 
f appearing in b are bounded and continuous. Result (2.2) follows readily 
from the pointwise convergence in (2.6), ifSvanishes outside a compact set 
(and, in Examples 2.1 and 2.2, if K is compactly supported). The case of 
compact support is paid particular attention by Devroye and Gyorti [S] in 
their study of the L, metric. More general situations can also be handled, 
as we show in the next paragraph. 

The convergence in (2.2) is usually uniform, in the following sense. (We 
treat only the case of Example 2.1.) Define h, = n - u(*~ + ‘)u*, and let A( U) 
be as in (2.3). Then we have: 

THEOREM 2.1 (d = 1). Zf K is a compactly supported pth-order kernel for 
somep~l;ifE(~X,~‘+“)<ooforsome&>O;~fisbounded;andiff’*‘is 
bounded, continuous, and integrable; then 

nPI(2P+l) m  

I 
EIF(xl~,)-f(x)ldx=~(u)+o(l) --as 

untformiy in u E [C ~ ‘, C], for each C > 1. Furthermore, 

inf 
I m E I!(xlh)-f(x)1 dx~n-*“2*+‘)A(~*), 

h>O pm 

(2.7) 

(2.8) 

where u* is the unique value of u which minimizes A(u). 

A proof of Theorem 2.1 is given in Section 5. The techniques are not 
specific to d= 1 dimension, and the theorem may be readily generalized to 
multivariate cases. The condition E( IX, I ’ +‘) < cc used in the theorem is 
close to being necessary for results of this type, since the function n(u) is 
not even well-defined for densities such as the Cauchy which have 
E(jX,j=co). (The reasonis that jf”‘=Cr;).) 

EXAMPLE 2.2: Nonnegative kernel estimator in d> 1 dimensions. Put 

f(xlh) - (nhd)-’ i K{(x - X,)/h}, 
j=l 

where K is a bounded d-variate probability density satisfying 
l ~~z~~2 K(z)dz< cc and jzK(z)dz=O. Let 

c, = 
5 iWd 

z,zK(z) dz and c2 = (jRd K2(z) dzjli2, 
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where zj denotes the jth component of z and it is assumed that the integral 
defining c, does not depend on j. If f is bounded and if all the second 
derivatives off are bounded and continuous then 

f(xlh)-f(x)= (c,/2)h2V2f(x)+(nhd))“* c2f(x)“2Z1 +o(h2) (2.9) 

as n -+ co, h = h(n) + 0, and nhd-+ co, where V2 f =cj (a/ax,)‘f is the 
Laplacian and 2, = Z,(x) is asymptotically Normal N(0, 1). (See Prakasa 
Rao [ll, p. 182ff) or Rosenblatt [12].) Take h ~n-“(~+~)n”~, r~44/d, 
~?=n-~/‘“+~‘, b,(x)=(c,/2)V2f(x), and cr0(~)=c2f(x)1’2. Then (2.1) and 
(2.2) hold with b- urbo and cr~~-‘a,. An analogue of formula (2.5) 
describes the effect of changing from one kernel to another. 

EXAMPLE 2.3: Histogram estimator in d> 1 dimensions. Divide all of IWd 
into a lattice of cubes with side length h. Given XE R”, let A(x) = 
n, s jGd (a, - $ h, aj + f h] be that cube in the lattice containing x, and 
write N(x) for the number of observations from the sample which fall into 
A(x). The histogram estimator of f(x) is 

f(x) = N(x)/(nhd). 

If f is bounded and if the first derivatives off are bounded and continuous 
then 

f(x)-f(x)= i (aj -xj)fi(x)+ (nhd)-“* f(x)“‘Z, +o(h), (2.10) 
j=l 

as n-co, h-+0, and nhd -+ co, where xi denotes the jth component of x, 
fib) = w-q f (x), and Z, is asymptotically Normal N(0, 1). (See 
Section 5 for a sketch of the proof.) Take h = n - ‘led+ 2)u2/d, r E 2/d, 
6~n-“‘“+~), b,(x)=h-’ cj (aj -xi) J;(x), and co(x)= f(x)‘12. Then (2.1) 
and (2.2) hold with b E urbO and cr E u-la,. 

This example differs from the previous two in that 6, depends on h. 
However, that dependence turns out to be unimportant, as we now show. 
Remember that our general asymptotic expression for L, distance is &l(u), 
where 

l(u)=j-Rddxjm lu’bO(x)-u-‘q,(x)zl d(z)dz; 
--m 

(2.11) 

see (2.2). In the present example, 
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where 9, = h ~ ‘(aj - xi) E ( - 4, i). As h + 0, n(u) converges to 

where y = (y,, . . . . yd) and b,(x, y) s C , .,,, y,jJx). This has the same 
form as the right-hand side of (2.1 l), provided we replace b,(x) by b,(x, y) 
and the integral over Iw” by an integral over lRd x ( - f, 4)“. Of course, 
neither h,(x, y) nor CT*(X) depends on n or u. 

With these trivial changes, the argument given in the first part of this 
section goes through as before. In particular, if we define 

and L(u) GE u- ‘n(v), then L is continuous and strictly increasing from - co 
to a positive number, and the value of u such that h - ~~~~~~~~~~~~~ 
asymptotically minimizes L, distance is the unique positive solution of the 
equation L(u’+‘) = 0 (or equivalently, of /l(u’+‘) = 0). The solution may 
be found rapidly by using the iteration argument given earlier in this 
section. 

Reiterating, the only change we need make to our earlier theory to treat 
the case of a histogram estimator is to replace the bias term b,(x) by a 
function b,(x, y) of y as well as x, and to integrate over y as well as x. The 
next example shows that to treat the case of a smoothed histogram 
estimator, or histospline, or frequency polygon, the only requisite change is 
to replace both b,(x) and a,(x) by functions of y as well as x, and to 
integrate over x and y. 

EXAMPLE 2.4: Frequency polygon estimator in d = 1 dimension. Divide [w 
into a lattice of segments, each of length h and having the form 
(t - 4 h, t + + h] for some t. Any x E [w may be expressed uniquely in the 
form x= a+ qh, where O<q < 1 and a is the midpoint of one of the 
segments. Let A,(x) = (a - f h, a + 4 h] and A2(x) = (a + f h, a + $ h], and 
write N,(x) for the number of sample values lying in A,-(x). The frequency 
polygon estimator of f(x) is 

f(x) = ((1 -rl) N,(x) + 02(x)W)-‘. 

If f is bounded and f N is bounded and continuous then 

f(x) -f(x) = ; h2f”(x)(3q - 3~~ + d) 

+(nh)~‘~2f(x)~~Z(1-2~+2~2)‘~2Z, +o(h2), (2.12) 
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as n + co, h -+ 0, and nh + co, where Z, is asymptotically Normal iV(0, 1). 
(See Section 5 for a sketch of the proof.) Take h E n ~ “‘u2, r = 4, 6 z nP215, 
b,(x) = &f”(x)(3r] - 3~~ + $), and co(x) - f(x)‘12 (1 - 2~+ 2~~)“~. Then 
(2.1) and (2.2) hold with b z u’bO and 0 = u-la,. 

As in the previous example, the dependence of 6, and g,, on h is unim- 
portant. To appreciate why, observe that asymptotic L, distance equals 
61(u), where n(u) is given by (2.11), and just as in Example 2.3, n(u) 
converges to 

s dx dy j- b’b,(x, y) - doo(x, ybl 4(z) dz Rx(0.l) * 
where b,(x, y) = $ f”(x)(3y - 3y2 + a) 

;X)i717’2y + 2y2)Y 
and co(x, v) E 

Neither b,(x, y) nor a,(x, y) depends on n or U. If 
we replace b,(x) by b,(x, y) and oo(x) by go(x, y), and integrate over x 
and y rather than just over x, then the theory in the first part of this section 
goes through without changes. 

3. ADAPTIVE MINIMIZATION OF L, DISTANCE 

In this section we concentrate on kernel estimators. Variants of our 
arguments may be used with other estimators, such as histogram 
estimators. We shall introduce an adaptive, data-driven method for 
minimizing L, distance, and prove that it does indeed minimize L, loss in 
an asymptotic sense. 

Suppose the data are in da 1 dimensions, and define the kernel 
estimator 

f(x)=.f(xlh)= (nhd)-’ 2 K{(x-X,)/h}. 
j=l 

Examples 2.1 and 2.2 in the previous section discussed such estimators in 
detail, and gave instances of the decomposition of f--f into bias and 
variance components; see (2.4) and (2.9). Let 

denote L, distance. As we showed in Section 2, if h, = n-“td(r+ ‘)}u21d for a 
correctly chosen r > 0 (depending on the kernel K), then as n -+ 00, 

J(h,)-n-‘/12(‘f’)~~(u) (3.1) 
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uniformly in u E [C- ‘, C] for any C > 1, where 

aO(x) is proportional to f(x) , ‘I2 b,(x) is proportional to a linear com- 
bination of derivatives off, and u > 0 is a variable parameter. Furthermore, 

inf J(h) m.pr’{2(r+ l)lA(u*), 
h>O 

(3.2) 

where U* is the unique value of u which minimizes n(u). (Theorem 2.1 gives 
regularity conditions sufficient for (3.1) and (3.2).) Of course, both b, and 
crO are unknown, and so any attempt at minimizing 1 using only infor- 
mation in the data must involve explicit or implicit estimation of b. and cro. 
In the present section we discuss the explicit approach to this problem. 

Let 6, and 8, be L, consistent estimators of b, and co, respectively. That 
is, 

(l~o-~oI+l~0-~oI)-+o (3.3) 

almost surely as n + co. Assume too that J 6, = 0. Later in this section we 
shall discuss candidates which satisfy these conditions. Put 

I(u) E lRddX I’” lu%,(x) - u-180(x)zl 4(z) dz. 
-m 

(3.4) 

The argument given in the early part of Section 2 shows that there is a 
unique fi* > 0 which minimizes f(u), and that li* may be found by 
iteration. Indeed, if we define a sequence uO, v,, v2, . . . by 

where 
Vi+ I = uj - A( Vi), j 3 0, 

A(u) 5 
[ 
lRd {r6,@(o6,/~,) - u-16,~(u60/60)} dx] 

X 
[J 

~d{(~+l)t;~B~~+Bou-*}~(uso/Bo)dx -l, 1 
then the sequence { uj} converges to that value 6*, 0 < I?* < co, which is 
such that ti* E (tY*)“(‘+ l). 

Remember that U* is the unique u minimizing n(u). In view of (3.3) we 
have, for any C > 1, 

sup IX(U) - n(u)1 + 0 (3.5) 
c-'<u<C 
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almost surely, and also li* + u* almost surely and A(ti*) + n(u*) almost 
surely. We shall detine our adaptive, data-driven window to be 

~*,n-ll{d(r+l)}(~*)2/d. (3.6) 

Let h* = n ~ l’(‘(‘+ ‘))(u*)*‘~ be the deterministic, asymptotically optimal 
window. Then &*/h* + 1 almost surely and J(&*)/J(h*) + 1 almost surely. 
(For the latter, use (3.1) and (3.5).) Indeed, noting the asymptotic relation 
(3.21, we have 

J’“*)/pf, J(h) + I (3.7) 

almost surely. In this sense, the adaptive window h* provides asymptotic 
minimization of L, distance. 

Observe that J(h*) is not the same as L, distance computed for j\(xlh*). 
The latter would be 

i E If(xlh*) -f(x)1 dx, 
w  

whereas 

J(h*) = j-Rd fE Ifbl~hf(x)l hi* dx. 

It would be more in keeping with the fact that h* is a random variable to 
examine /i* in the context of minimizing raw L, distance, defined by 

(Of course, J= E(j).) A natural question to ask is whether h* is 
asymptotically as good as the window which minimizes j; that is, whether 

@*)/inf, S(h) + 1 (3.8) 

almost surely. This result is analogous to (3.7), and if it were true it would 
provide another sense in which the adaptive window h* was asymptotically 
optimal. In fact, (3.8) is true under appropriate regularity conditions. It 
follows from (3.7) above and (3.9) below. 

THEOREM 3.1 (d > 1). Zf K is compactly supported and Hiilder 
continuous, and if f is bounded, then 

{~h~.@))lf)P~J(h)~ + 1 and @*)/J(fi*) + 1 (3.9) 

almost surely as n + 00. 
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We now give examples of the estimators 6, and 8,. For notational 
convenience we concentrate on the case of d= 1 dimension, which was the 
subject of Example 2.1. In this circumstance, Theorem 2.1 gives regularity 
conditions sufficient for (3.1) and (3.2). The techniques used to derive 
Theorem 2.1 and Theorem 3.2 below are not specific to d= 1 dimension, 
and our results are readily extended to multivariate cases. 

Define 

f(xlh) = (nh)-L f K{ (x - X,)/h)> 
j=l 

where K is a pth-order kernel for some p > 1. The versions of b0 and c0 
appropriate to this context are b,(x) - (ci/~!)f(~)(x) and co(x) E 
c*f(xY, where c1 = s .PK(z) dz # 0 and c2 = (s K*)“*; see Example 2.1. 
As our estimates of fp) and f *I2 we shall take 

and 

f\“‘(x)+nhf+‘)-’ ,f K(1P){(x-X,)/hi} 
j=l 

&(x)~‘*E [(A$’ f K,((X-xjJ/h2}]“2, 
j= I 

where K, and K, are kernels (possibly the same as K), K, is nonnegative, 
and it is assumed that K\P) is well-defined. Of course, j\\P) is just the pth 
derivative of an ordinary kernel estimator. Its existence as a numerical 
quantity does not require existence off’ P), but for convergence we do need 
to assume that the pth derivative is well-defined and finite. Our estimates of 
6, and (rO are 

kdx) = (Cl/P!) f\pw, B,(x) = c*f*(x)l? (3.10) 

Notice that J 6, = 0. The only other property required of 6, and 8, is the 
L, convergence described by (3.3), and that follows from the following 
theorem. 

THEOREM 3.2 (d = 1). Assume K, and K, are bounded, compactly 
supported, and integrate to unity; K!J’J is well-defined and bounded, K2 is 
nonnegative; E( 1 X, 1’ + “) -C co for some E > 0; f is bounded; fcp’ is bounded, 
continuous, and integrable; and h,, hz + 0, nh:P+ ‘/log n + 00, and nh, + 00. 
Then 

s f 
cc 1 IPI-f(P)j+O (3.11) 
-cc 

and 

s 
O" @*-fl/*( +() (3.12) 
-‘x 

almost surely. 
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The condition E( IX, 1’ +‘) < co was imposed also in Theorem 2.1, and as 
explained there it is needed to excludefs such as the Cauchy density, for 
which the theorem fails. The condition nh:J’+ l -+ 00 is necessary for weak 
pointwise consistency of&), and our assumption that nh:P+ ‘/log n -+ cc is 
only slightly more restrictive. Nonnegativity of K2 is needed to ensure that 
3:/* is real-valued. 

In conclusion, we point out that iff, K,, and K, satisfy the conditions in 
Theorem 3.2, if the pth-order kernel K satisfies the conditions in 
Theorem 3.1, if &, and 8, are defined by (3.10), if li* denotes the value of u 
minimizing R(u) (defined at (3.4), with d= 1 and r = 2p), and if b* is given 
by (3.6), then results (3.7) and (3.8) hold: 

J(L*)/ inf J(h) + 1 
h>O 

and .?(&*)/ inf j(h) + 1 
h>O 

almost surely. In these two senses, our adaptive, data-driven window h* 
provides asymptotic minimization of L, distance. The next section 
describes numerical applications of this idea. 

4. NUMERICAL RESULTS 

In this section we confine attention to d= 1 dimension, and to sym- 
metric, nonnegative kernels. This amounts to taking p = 2 in Example 2.1, 
and means that the “asymptotically optimal” window in the sense of 
minimizing L, distance is h* = n-‘15(u*)*, where U* is that value of u which 
minimizes 

m 
u4 f c,f”(x) - U-‘c2f(x)“* z 4(z) dz. 

(Here ci = j z*K(z) dz and c2 = (j K * ‘/*. See Example 2.1 for details.) ) 
Work in this section falls naturally into two parts. First, we discuss 
numerical values of the constant Co) = (u*)* in the formula h* = C(l)n-“‘, 
for the case where f is either Normal or a mixture of two Normals. Then 
we show how to implement the adaptive method described in Section 3, 
and illustrate those ideas by applying our techniques to simulated data. 
Throughout the section we stress differences between L, and L, 
minimization. 

Put g(x) = c,(2c2)-’ f”(x)/f(x)‘/*, and define 

mu) = u j- c%(x) @{w(x)) - d{w(x))l f(x)“* dx -‘xi 

X (I- -co C5{w(x))* + 114{wW f(x)‘/* dx)l. 
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Define the sequence uO, vi, vl, . . . by uj+ i = uj - H(v,), j > 0, where u0 > 0 is 
arbitrary. We showed in Section 2 that this sequence converges to the num- 
ber u* such that U* = (o*)“‘. Thus, h* = Cc1)n-1’5, where C(i)= (Y*)*/‘. (If 
u0 is chosen much larger than u* then vi ‘may be negative, due to the fact 
that L is concave. This difficulty is easily overcome by using a smaller value 
of uo.) 

Once we know the value of h* for a particular symmetric, nonnegative 
kernel K,, we can easily derive it for all other kernels of this type. Indeed, 
let h,* be the version of h* for K,, and let c,,i and c,,* be the corresponding 
versions of ci and c2. Then the value of h* for the kernel K is 

h* =h,*{(c,,c*)l(c,c,2)}2’5; 

see (2.5). In the next three paragraphs we work with the Bartlett- 
Epanechnikov kernel, K(x) - $ (1 -x2) if (xl< 1, 0 if 1x1> 1. This K is 
bounded, compactly supported, and Holder continuous. 

When f is the standard Normal density and K is the Bartlett- 
Epanechnikov kernel, the constant C(i) in the formula h* = C(“W”~ 
is C(i) = 2.279. By way of comparison, the window Cc2’n -‘j5 which is 
asymptotically optimal in the sense of minimizing L2 distance has 
Cc2) = 2.345. Since C(I) < Cc2) then minimizing L, distance provides slightly 
less smoothing than minimizing L, distance:.However, the two constants 
are remarkably close. In the case of L, distance, it is sometimes suggested 
that when the data distribution is unknown, the window be chosen as 
though the data were Normal, resulting in h = 2.345&n”/5, where 6 is 
sample standard deviation. The analogue of this proposal in the case of L, 
distance is of course h = 2.279&n- ‘15, provided the Bartlett-Epanechnikov 
kernel is in use. 

Recall from Section 2 that minimum asymptotic L, loss is nP215 inf, A(u), 
where A(u) is defined at (2.3). Devroye and Gyiirfi [S, pp. 78-791 give 
bounds for inf, A(u). In the case where f is standard Normal and K is 
Bartlett-Epanechnikov, these bounds (together with the exact value) are 

1.002 < inf A(u) = 1.022 < 1.341. 
u 

The lower bound in particular is remarkably accurate. 
Devroye and Gyiirfi [S, p. 1071 also suggest an approximation to the 

asymptotically optimal window: h N 1.664n-“5, compared to the actual 
value 2.279n-I/‘. The discrepancy here is due to the fact that the function A 
is quite flat in the vicinity of the minimizing value, U* = 1.510 ( = 2.279”*). 
Indeed, 

[A( 1.45) - A(u*)l/A(u*) = 0.006, /A( 1.55) - A(u*)I = 0.003. 
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It is much faster to derive U* using the iterative argument described in the 
second paragraph of this section, than to find it by a direct attempt at 
minimization. 

Table 4.1 lists values of C (I), Cc*), and the ratio C”‘/C’*’ for several 
equal-proportion, two-component Normal mixtures, with densities 

f,(x)=&(2rrr~*)-~‘~exp{ -(x+ 1)*/2a2}++(2rta2)-“*exp{ -(x- 1)*/20*}. 

(The only variable parameter governing f is the common variance, a*.) In 
all these cases the ratio C(‘)/C(2) is less than one. This occurrence seems to 
be more common than C(l)/C(*) > 1, although the latter can arise. A case in 
point is that of equal-proportion, two-component Normal mixtures with 
means (1, - 1) and variances (1, l/10), where C(l)= 1.03 and Cc*)= 0.98. 

The closeness of the ratio C”‘/C (*) to unity in many cases of interest 
means that from a practical viewpoint there is often little to choose 
between a density estimate which has been optimised in an L, sense and 
one which has been L2 optimised. Graphs of f(x’(xjh) for h = C(‘)n-“5 and 
h = CWn - l/5 are virtually indistinguishable when J is a Normal mixture. 

We conducted a series of experiments using the adaptive window selec- 
tion rule suggested in Section 3. We took f to be the standard Normal den- 
sity, and K, K,, K2 all to be the standard Normal kernel. (Since this K does 
not have compact support then, strictly speaking, results in Section 3 do 
not apply to it. That may be remedied by using arguments from [7].) We 
selected the window h,, needed in the construction off:/*, by squared-error 
cross-validation. Thus, j’( . jh,) asymptotically minimizes L, loss. We took 
h, , needed for 77, to be simply Iz~‘~, in the knowledge that a window of size 
n -‘/5 is optimal for estimating f, whereas a window of size n-1/9 is optimal 
for estimating f “. Constructing ti* in the manner described in Section 3, we 

TABLE 4.1 

Values of C(“, C@) for Bartlett-Epanechnikov Kernel K and for Equal-Proportion, Two- 
Component Normal Mixture Density fwith Means (1, - 1) and Variances (u*, u2). Windows 

C(% -‘IS, Cc2’n m1’S Are Asymptotically Optimal for I., , Lz Loss, Respectively. 

z -2.2790 11.6 -2.3450 12.0 0.912 0.972 
5’ 5.60 5.80 0.966 
50 3.01 3.26 0.925 
5-l 1.15 1.18 0.969 
5Y2 0.524 0.539 0.972 
0 -2.279~ -2.345~ 0.912 
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-3 -2 -1 0 1 2 3 

FIG. 4.1. Numerical examples of adaptive procedure discussed in Section 3, with J K, K,, 
Kz all equal to standard Normal density I$. Solid curve isf( .I/;*) (asymptotically L, optimal), 
dashed curve is j( .1/z,) (h, found by squared-error cross-validation; asymptotically Lz 
optimal), and dotted curve is true f: Sample size is n = 100. 

defined h* 5 K’/~(;*)~. (The quantity C(l) G (ti*)” is a consistent estimator 
of CCL).) We compared graphs off( -IA*) and3( -&,). For large n (n 3200) 
there was little difference between the true curves, although h* was a little 
more robust than h, against sampling fluctuations. This appears to be due 
to the fact that &*/(C(1)~-1’5) converges to unity at rate ne219 (the rate of 
consistency of 3°C . I/z,) for f”), whereas A,/( C@‘n - ‘15) converges to unity 
only at rate n-l”’ (see [S]). For n= 100 there was a tendency for C(l) to 
underestimate 6’) and for n”5h2 to overestimate Cc2), but neither fi* nor h, 
gave curves which were closer, on average, to the true density. Figure 4.1 
depicts two typical results. 
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5. PROOFS 

Throughout our proofs the symbols C, C,, Cz, . . . denote positive generic 
constants, possibly different at different appearances. 

Proof of Theorem 2.1. We show first that for any C > 1 and h < 1, 

I@, k C) = j- E If(xlh)-f(x)1 dx<g(C){(nh)-1’2+hP}, (5.1) 
1x1 > c 

where g does not depend on n or h and converges to zero as C + 00. 
Notice that 

(p- l)! IEj‘(xlh)-f(x)/ = hP j”‘ K(z) dz 
-cc 

x 
s 
: fp’(x - thz)( 1 - I)~- ’ dtl, (5.2) 

and that if lhzl <C and O< t-c 1, {x: 1x1 >2C} c {x: lx- thzl > C}. 
Therefore if h < 1, 

I,(n, h, 2C) = j IEfC4h) -f(x)l dx 
III z 2c 

<h* _“, IZ+)l dz j,.“, > c If’“‘(~)l 4 

+I lhrl > C 
IW)l dz j- If’“‘bGl 4 

-02 

G g,WW, 

where 

g,(X) = j-_s, K(z)1 dz i;,, > c If’“‘WI 4 

+ c-p jra lzPK(z)l dz j- lf’“‘(~)I &. 
-cc --co 

Also, var{f(x(x(h)} <(nh)-’ ~K2(z)f(x-hz)dz. Given a> 1, put 

> 

112 
(l+lxl*)-‘dx . 
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Notice that 1 + 1x1’ < 2”( 1 + (x - hzl” + lhzl”). Therefore if h G 1, 

~2h h, C) = 1 [var{f(xlh)}]‘/*dx 
Id> c 

112 
var(f(xlh))(l + 1x1”) dx 1 

where 

g3(C) = g*(C) 2”‘* m K2(z)dzsm (l+lxl”)f(x)dx 
-‘x -cc 

+r 
Iz( OL K(z)* dz 

-m 1 
112 

. 

This quantity is finite if CI is sufficiently close to unity. The desired result 
(5.1), with gz g, + g,, follows from the estimates in this paragraph and 
the fact that I< I, + I,. 

Let b, and (TV be the functions defined in Example 2.1. Put 

l(u,C)~j dxlp lu’b,(x) - u- ‘a,(x)zl 4(z) dz, 
Ixlgc --‘u 

where r = 2p. Then for any C, > 1, 

lim sup IA(U, C,) - A(u)1 = 0. (5.3) 
cy-+ 02 UE [c;‘,c,l 

Techniques used to prove Theorem 1 on p. 78 of [S] are readily adapted to 
show that for any C2 > 0, 

sup 
UE cc;‘,c,1 

Elf(xIU-f(x)1 dx-A(u, C,) +O (5.4) 
s c2 

as n + oz. Result (2.7), with uniform convergence, follows from (5.1), (5.3), 
and (5.4). 

We showed in Section 2 that the continuous function A has a unique 
minimum, occurring at the point u *. Result (2.8) will follow from this fact 
and (2.7) if we prove that for some C > 0, 

J(h) >, C[min{ (nh)-1/2, l} + min(hP, l)] (5.5) 

683/26/t -6 
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whenever n 2 1 and h > 0. Now, 

and so 

3JbJ, +J,, (5.6) 

where J, =j E \3--@l and J, =f I@-fl. We may show from (5.2) that 

O” liminfh-P IE(xlh)-f(x)1 dx>O, 
h-0 -a2 

and so there exist C,, C2 > 0 such that J,(h) > C, hP whenever 0 < h < Cz. 
The inequality J,(h) >, C3 for h > C2 is easily established separately. 
Therefore J,(h) > C4 min(hP, l), for all h > 0. The desired result (5.5) is a 
consequence of this inequality, (5.6), and the lemma below. (We state and 
prove the lemma for d-dimensional data, since that form will be needed in 
the proof of Theorem 3.1.) 

LEMMA 5.1 (d > 1). Zf the d-variate kernel K is bounded, vanishes outside 
a compact set, and integrates to unity, iff is bounded, and ly the d-variate 
kernel density estimator 3 is based on K, then for a constant C> 0 not 
depending on n or h, such that for n 2 1 and 0 < h < 1, 

1 Rd 
E Ij‘(x/h) - Ef(xlh)l dx > C min((nhd)-“2, 11. 

Proof of Lemma 5.1. By an inequality for moments of sums of indepen- 
dent random variables [ 1; 5, p. 901, 

I El f(xlh) - E$(xlh)l - (2/n)“* {E I-?(xlh) - Efixlh)l*) “*I < C,(nh“-‘, 

where C, does not depend on x, n, or h. Simple calculations show that for 
hd 2 n - ’ and for some bounded region !J?, 

s (E If- E312)“2a C2(nhd)-l’*. 
2% 

Therefore if h” 2 C, n - ’ and C3 is sufficiently large, 

Ja E If- Efl > $ C2(nhd)-‘I*. 

This proves the lemma for hd > C,n- ‘. 
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To treat the case hd < C,n - ‘, suppose K vanishes outside a ball of radius 
s centred at the origin. Then f(xlh) = 0 if (x - Xj 1 > sh for each j, 1 < j < n. 
Therefore if hd < C,n -i and n is large then the chance that f(xlh) equals 
zero exceeds 

p(x;n)~{(P(~x-Xl>sh)}“3(1-Budsdhd)” 

> C, exp( - nBvdsdhd) 2 C, > 0, 

where B is an upper bound tof, ud equals the content of the d-dimensional 
ball of unit radius, and C, does not depend on x, n, or h. Hence 

2 c5 %-W dx = Cs, 

which completes the proof of Lemma 5.1. 

The condition that f be bounded, imposed in Theorems 2.1 and 3.1 and 
in Lemma 5.1, may be relaxed. We do not pursue such generalizations here, 
because the condition of boundedness is mild, natural,, and commonly 
imposed in work of this type-see, e.g., [S, 141. 

Proof of Theorem 3.1. Our proof uses a very powerful result due to 
Devroye [4]. We state it here, for convenience. 

LEMMA 5.2 (d > 1). If K is bounded and compactly supported then there 
exist posit&e constants C,, Cz, and C3, depending on K but not on f or n, 
such that 

sup P{ l](h) - J(h)1 > E) < C, exp( - C,ne*) 
h>O 

whenever C,n-1/2 de < 1. 

Lemma 5.2 is a corollary of Devroye’s Theorem 1 [4]. In fact, Devroye 
shows that_ we may take C1 = 2 and C2 = (32 j IKIj-‘. 

Let ho, ho be the values of h which minimize J, J, respectively. It is easy 
to see that for a > 0 sufficiently large we have n-” <ho < na for all large n, 
and also 

P{n-” <ho(n), &* d n”, all n 2 n’} + 1 

as n’ + co. Given c > 0, let X = #(a, c) = {h,, h,, . ..} be the nonrandom 
sequence defined by n-‘=h, <h, < ... <h,,-, <n”<h, c . . . and 
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h ,+,-h,=n-“,i~l.Foreachh~~~[~n~“,n”],letH(h)beavaluein~ 
which minimizes Ih - H(h)(. By Holder continuity and compact support of 
K, we may choose c = c(a) so large that for some C > 0, 

sup /j(h)-j{H(h)}l <Cc’, 
htY 

no matter what the sample % = {X,, . . . . X,} or the value of n. This 
inequality entails IJ(h) - J{H(h)}l 6 Cn-’ for all h E 9, and so with 
A=j-Jwe have 

sup IA(h)-A(H(h)}l <2Cn-’ 
he9 

(5.7) 

uniformly in samples X. 
Suppose we prove that for some q > 0, C, > 0, and all suhiciently large n, 

inf J(h) 2 C,,n-“2+q. (5.8) 
hEl 

Taking E = n-cl -VI/2 . m the lemma we see that for large n, 

Pi sup IA( >n -(1pq)‘2} < f p((A(hj)l >n-(‘-?)/2} 
I<j<m j=l 

B C, m exp( - C2nq). 

Therefore, since m = @no+‘) as n + co, 

nz, P{, yym l4hJ > n-(‘-““*I < 00, 
. . 

implying (by the Borel-Cantelli lemma) that 

n(‘p~)‘2 sup IA( + 0 
l<j<m 

almost surely. In view of (5.7) this entails 

n” -v)‘2 sup I A(h)1 + 0 
hc9 

almost surely, and together with (5.8) this gives 

{;,nf .@)I/(~~ J(h)) -+ 1 and @*)/J(h*) --f 1 

almost surely. Theorem 3.1 follows: note the property mentioned in the 
second sentence of the previous paragraph. 
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It remains to prove (5.8). Recall result (5.6): 352 J, + J,, where J, = 
SEIf-E3J and J, -s lE3-fl. W e k now from Lemma 5.1 that for h < 1, 
J1 2 C min{ (Ad )-l/*, 1 }. Inequality (5.8) follows from these estimates and 
the fact that for some 5: > 0, 

J2 > C min(hs, 1). 

We conclude by proving (5.9). 

(5.9) 

Since K is bounded then for each E > 0 there exists h’> 0 such that 
131 GE for all n 2 1, all x, all samples X, and all h 2 h’. Therefore we 
trivially have (5.9) for sufficiently large h-say for h 2 h”. If h < h” then 

IE3-fI G c- 2(SUP j-1 jRd Ia 

so that 

J23C-’ 
I rzzd 

I@-fl’> C’hC 

for some 5 > 0, the second inequality following from Lemma 1 of Stone 
c141. 

Proof of Theorem 3.2. (i) Proof of (3.11). Result (3.11) follows from 

f m lE3(1p) -“Pl + 0, (5.10) 
--m 

s 

00 
If’,P)-Ef(1p)I +o almost surely, (5.11) ~co 

and we prove these limit theorems separately. 

(i.a) Proof of (5.10). Observe that 

.@(,p)(x)-f”)(x)=/m K,(z)(f(P)(x-hlz)-f(P)(x)) dz, 
--a3 

and so by continuity offpI and compact support of K,, 

sup lEj;‘P’(x) - f’P’(x)l + 0 
l-Y.1 4 c 

for each C > 0. If K, vanishes outside the interval [ -s, s], and if h,s < t C, 
then 

J;-r,<c Lw)-f(P)l G2(J:w IKI) j; x ,>(*,*)c If(P 

Result (5.10) follows from the last two displayed estimates. 



82 HALL AND WAND 

(i.b) Proof of (5.11). We begin by stating a version of Bernstein’s 
inequality (see, e.g., Hoeffding [lo, p. 17]), which we need on three 
occasions. 

LEMMA 5.3. Zf Y1, . . . . Y, are independent and identically distributed with 
zero mean and variance a’, and if each 1 Yj I < c, then 

p(i,c, Y/>t)G2 exp{ - 1 t2(na2 + ct)-’ >, all t > 0. 

For any 5 > 0, the integral on the left-hand side of (5.11) is dominated by 

+ [,-x, >5 I.PP)I + Ia, ImP)--f(P)I. -cc 

Therefore it suffices to show that for some sequence 5 = l(n) diverging to 
+ 00, we have 

5 3 1 y’l -+o almost surely, (5.12) 
1-r > r 

f. ,x( < c If? - E31P’l -+ 0 almost surely. (5.13) 

If the support of K1 is confined to [ -s, s], and if h, is so small and 5 so 
large that h, s < 15, then the left-hand side of (5.12) is dominated by 

(nhf+‘)-’ f j l~lP’{(X-Xj)lh,)I dx 
j= 1 Id >5 

(5.14) 

where C1 E sup IK\P)I. Suppose E(IX,)“)<oo, where cr>l. Then 
TC=P()X,I>~<)<C~~-~, and so if we take t=h;f’/fi, where 
(2a)/(a + 1) < B < a, we have 

E((nhf)-’ f: Z(lX,l > 1 r)} < C,h;(“-fi)@ -0. 
i= I 
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Furthermore, for each E > 0 we have by Lemma 5.3, 

q-P 
[I 

.f {I(&./ >;t)-fr} 1 1 > mhf’ 
j=l 

<2exp[-f(snhp)2 {nrr(l-rr)+.snhp}-‘1. 

Now, ~(l-~~)<C,hf@dC,hf, and so 

q < 2 exp{ -C,(&)nhf} = O(npk) 

for all k > 0, since nh:P+ l + co. Therefore, by the Borel-Cantelli lemma, 

(nhf)-’ f Z(lX,l >;t)+O 
j= I 

almost surely, which together with (5.14) proves (5.12). 
To establish (5.13), put r’(x) - max{rT(x), (1 + Ix120r)-‘}, where 

T;(x)= jm K(,p’(z)’ f(x - h,z) dz, 
-02 

and let q. denote the set of values of x E (0, c) such that (1 + 1x1*) r’(x) > 2. 
We shall prove separately that 

s 
1py - @\q + 0 almost surely, (5.15) 

1x1 st:xE9m 

s 
Ij\lP) - Ej’\P’l + 0 almost surely. (5.16) 

1x1 c s:.Y 6 92 

As a prelude to deriving (5.15) we show that the Lebesgue measure of 
9,) which we denote by 9(r4pm ), is bounded. To prove this, let Y, have the 
uniform distribution on (0, c), and observe that (1 + 1x1”) r2(x) > 2 if and 
only if (1 + Ix/“) r:(x) > 2. By Markov’s inequality, 

and so 

uniformly in h, < 1, since E( IX, I “) < co. For each E > 0, the left-hand side 
of (5.15) is dominated by s9(9??)+h;(Pf1)(2sup IK!p)l)M,, where 
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The desired result (5.15) will follow from this observation via Markov’s 
inequality and the Borel-Cantelli lemma if we show that for all E > 0 and 
k > 0, E(M,) = 0(n-‘). To establish the latter bound, take 

Yj~K~~){(X-~j)/hl}-EK~~){(x-Xj)/hl}, 

c = 2 sup IhljP)I 9 t E mhf’+ ’ 

in Lemma 5.3. Then o2 < h, r:(x) < C, h 1, the latter inequality holding since 
f and K\p) are bounded. Therefore 

f t2(na2 + ct)-’ > C,(c)(nhf+ ‘)’ {nh, T:(X) + nhp+ ‘} ~’ 

3 C3(&) nh:P+ I, 

and so, since nhfP+ ‘/log n --t co, 

w,Kq exp{ -C3(s) nhy+l} dx 
ycc 

= 29(9&) exp{ - CJ(.s) nhfP+ ‘} 

= O(@) 

for all k > 0, as required. 
Finally, we derive (5.16). For each E > 0, the left-hand side of (5.16) is 

dominated by 

s 00 
E T(X)@‘” dx + h;(P +I)(2 sup I@)[) M2, 

-02 
where 

and Yj is as defined in the previous paragraph. Now, by Holder’s 
inequality, 

co 
TV’” dx < 

I 
m 

80~ 
TV (1 + 1x1)” dx 

-m -‘x 1 

O” 
m - 8)/W) 

X 
(s 

(1 + IXI)-d/(2a-8) dx 

-02 

uniformly in h, < 1, using the fact that E( IX, 1’) < cc and t$ > 2a - p. 
Therefore (5.16) will follow via Markov’s inequality and the Borel-Cantelli 
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lemma if we show that E(M,) = O(nPk) for all E > 0 and k >O. Apply 
Lemma 5.3 once more, with the same values of Yj and c but this time with 
t = &nhp+‘t(x) B’a. Since cr* < h, T*(X) then 

T = T(x) = + t*(na’ + ct) - ’ 

3 C,(&)(tlhf + ‘)2 z(Xpa 

x {nh,z(x)* +nh:,+‘T(xy’y. (5.17) 

To bound the right-hand side of (5.17) we treat two cases separately. 
First of all, suppose hp 6 t(~)*-(~“). Then 

T>t C‘,(E) nh;P+‘~(x)-*(~~~)‘~ 

~2(8’“‘-*Cq(&)nh:p+‘(l + I~l”)(“~fl)‘“, 

the second inequality holding when x # 9&,, since the latter statement 
means r(x)-* > f (1 + 1x1”). Second, suppose II: > z(x)*-(~‘~). Then 

T> + Cd(&) nhp+ 1r(x)8’a 23 Cq(s)nhp+‘(l + Ix~*~))~‘*~ 

b C&) nh:P+ *, 

the second inequality holding because r(x)* 2 (1 + IxI*~)-~ and the third 
holding when 1x1 d l= h;dp. Combining both these bounds we conclude 
that T> CJE) nhfP+ ’ when 1x1 < t and x # ym. Therefore 

< 45 exp( - CJE) nhfJ’+ ‘} = O(nMk) 

for all k > 0, as had to be shown. 

(ii) Proof of(3.12). Observe that 

m 

112 d lj;(x) -f(x)1 (I+ Ixl”) dx 

X fm 
-02 

(l+ Ixla)-l dx}“*, 

where (as before) a > 1 is chosen so that E( IX, 1’) < co. It is well known 
that under the conditions of Theorem 3.2, 1 Ij\, -fl + 0 almost surely. 

683/26/1-l 
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(See, e.g., Theorem 1, p. 12 of [S].) Therefore it suffkes to prove that with 
probability one, 

lim lim sup 
I 3 

*(x)( 1 + 1x1’) dx = 0. (5.18) 
c-rm n+cc IXI > c 

Suppose K, vanishes outside the interval C-s, s], and let hz be so small 
that h,s Q 4 C. The integral on the left-hand side of (5.18) equals 

K,(Y)(~ + Ix, + h, 149 4 

,<~*(suP IKzI)n-’ f (I+ IXjl”)Z(lX~l >iC) 
j= 1 

Result (5.18) follows from this inequality via the strong law of large 
numbers. 

Proof of (2.10). The variable N(x) appearing in the definition off(x) is 
Binomial, and from this fact it follows easily that j\(x) --ET(x) = 
(n&‘-1/2 f(x)‘/’ 2(x, n), where Z(x, n) is asymptotically Normal N(0, 1). 
Notice too that for YEA(X), 

f(Y)=f(x)+ jJ (Y-x)jfi(x)+o(h)9 
j=l 

so that 

n -‘WW) =f f(y) dy 
AC-x) 

=h”f(x)+j$l Iz”-%(x)~~;~~;~; (t-xj)dt+o(hd+l) 
I 

= Q-(x) + h" i J;(x)(fz, - Xj) + 0(&j+ 1). 

j=l 

Therefore I@(x) -f(x) = c, (a, -x,) h(x) + o(h). 

Proof of (2.12). The variables (N,(x), NJx), n - N,(x) - N,(x)) have a 
joint multinomial distribution, and N,(x) and N*(x) are asymptotically 
independent and identically Normally distributed. From this fact it follows 
thatj\(x) - I!&(X) = (nh)-“2 f(x)“2 { (1 - 1)’ + II’} 1’2 2(x, n), where 2(x, n) 
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is asymptotically Normal N(0, 1). Also, writing a, s u and a, = a + h, we 
have 

n-'E{yj(x)} =j  f(Y) dY 
A,(x) 

= f(x) + (Y -xl f’(x) 

=A f(X)+(UjwX)f’(X) 
L 

+; 
i 

3(ai-x)2+;h2 I 1 f”(x) +o(h3). 

Therefore, noting that x - a = q/z, 

Jw(xH = (nh)-’ q Cl- rl) N,(x) + O,(x)} 

= f(x) + 4 h2f”(x)(3q - 3472 + 4) + O(h2), 

after a little algebra. 
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