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We construct a simple algorithm, based on Newton’s method, which permits
asymptotic minimization of L, distance for nonparametric density estimators. The
technique is applicable to multivariate kernel estimators, multivariate histogram
estimators, and smoothed histogram estimators such as frequency polygons. It has
an “adaptive” or “data-driven” version. We show theoretically that both theoretical
and adaptive forms of the algorithm do indeed minimize asymptotic L, distance.
Then we apply the algorithm to derive concise formulae for asymptotically optimal
smoothing parameters. We also give numerical examples of applications of the
adaptive algorithm.  © 1988 Academic Press, Inc.

1. INTRODUCTION

The “L, view” of nonparametric density estimation has recently received
considerable attention, due in large part to the monograph by Devroye and
Gyorfi [5]. These authors give a particularly lucid exposition of the
mathematical attractions of L, distance: it is always well-defined as a
metric on the space of density functions; it is invariant under monotone
transformations; and it is proportional to the total variation metric.
Devroye and Gyérfi point out that there are technical difficulties associated
with L, optimality, and they circumvent these by working with upper and
lower bounds to L, distance. In the present paper we work directly with an
asymptotic formula for L, distance. We produce a simple, rapidly con-
verging, iterative algorithm which permits minimization of L, distance, in
both theoretical and adaptive (“data-driven”) approaches to the problem.
This leads to a practical procedure for asymptotic minimization of L, loss,
which we illustrate numerically.
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In more detail, our main contributions are as follows.

(i) We derive a general asympiotic expression for the L, distance
between a density f and its estimate f, and show that minimization of this
formula is equivalent to solving an equation L(v)=0 (v >0), where L is a
readily computable, strictly increasing, continuous function with
L(0)= —oo and L(+o0)>0. The equation is easily solved by Newton’s
method, and so minimization of L, distance reduces to a simple, rapidly
converging iteration (Section 2).

(ii) We illustrate the versatility of result (i) by giving versions of the
function L for general kernel estimators, for histogram estimators, and for
smoothed histogram estimators in d> 1 dimensions. Other cases, such as
histospline estimators, may be treated in an identical manner (Section 2).
Applying the iteration argument in {i), we derive formulae for theoretical
asymptotically L,-optimal window sizes in the case of kernel estimators
(Section 4).

(iii) We develop an adaptive, strongly consistent version of the
procedure described in (i). This amounts to constructing an “estimate” L of
the function L, involving only the data and not the unknown density f. The
estimate L has the same basic properties as L, and so the equation L(v) =0
is easily solved via a rapidly converging iteration. We prove that the
resulting adaptive density estimator asymptotically minimizes L, distance
(Section 3). A numerical illustration shows that the procedure is practicable
(Section 4).

Section 2 describes and discusses our general approach to minimizing L,
distance, Section 3 introduces adaptive techniques, and Section4 sum-
marizes numerical results. All proofs are deferred to Section 5. We know of
no other work which computes explicit formulae for minimum L, distance
or for asymptotically optimal smoothing parameters. However, formulae
are available in the case of L, loss; see Prakasa Rao [11, Chaps. 2 and 3].
Our adaptive methods for minimizing L, distance are distantly related to
those suggested by Woodroofe [16], in that both are based on “plug-in”
rules. A further account of minimization of L, distance, including
application to histogram estimators such as that studied by Scott [13],
appears in Wand [15].

The case where the smoothing parameter is allowed to depend on
location, x, is beyond the scope of this paper, although it may be treated in
a somewhat similar manner. In particular, the equation “L(v)=0" (see (i)
above) takes the form “L _(v) =0" in the location-dependent case, and has
an adaptive version. Brief details and examples will be given in [9].

We close this section with a little notation. A random n-sample from the
distribution with unknown density f (in 4 > 1 dimensions) will be represen-
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ted by X, ..., X,. The univariate standard Normal density and distribution
functions will be denoted by ¢ and &, respectively. Unqualified integrals
will be over either R? or R; the case will be clear from context.

2. ASYMPTOTIC MIMIZATION OF L; DISTANCE

In this section we show how to minimize asymptotic formulae for L, dis-
tance in the case of kernel estimators, histogram estimators, and smoothed
histogram estimators (i.e., first-order histosplines). Our initial exposition is
tailored to the case of kernel estimators, where relatively simple formulae
are available for bias and variance. Immediately after that work we
illustrate our argument with two examples treating general kernel
estimators. Then we give two examples dealing with general histogram
estimators, and there we show that only minor modifications to the earlier
argument are necessary to handle the histogram case.

Suppose the estimate f of the d-variate density f is so constructed that
bias and standard deviation are of the same order of magnitude, roughly
equal to & say. If f is asymptotically Normally distributed then we may
write

f—f=8(b—02), (2.1)

where &b is asymptotic to the bias of f, 3¢ is asymptotic to the standard
deviation, and Z = Z(x) is asymptotically Normal N(0, 1). Of course, this
representation is far from being unique. For kernel estimators we may
choose 4, b, and ¢ so that é depends only on n, and » and ¢ depend only
on x. In the work below it is convenient to think of the representation as
having this form.

In view of (2.1),

o7 [ Bl =l dx=] dax[" |b(x)-o(x)
R4 Rrd S
x §(z) dz + o(1) (2.2)

as n — co. Since bias integrates to zero then | b(x) dx =0, and so the right-
hand side of (2.2) (excluding the o(1) term) equals

b(x)/o(x)
.[ j
R4

{b(x) —a(x)z} é(2) dz

—[ax [T (b -otx)z) 4(2) dz
R4 b(x)/o(x)

=2[ i [ 0 —etz) gt

J‘b(x)/d(x)

=2f da(x)dx D(2) dz.

— o
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Therefore asymptotic L, loss is given by d4, where

bix)/e(x)
J D(z) dz.

i=2 f o(x) dx
R4 — o0
In most cases of practical interest, bias and standard deviation can be
balanced against one another to achicve the “optimum.” This means that
for some r>0, b(x)=uby(x) and o(x)=u"'oy(x), where u>0 is an
adjustable parameter not depending on x, and b, and o, are fixed functions
of x, not depending on u. Thus, A is really a function of u. See the end of
this section for examples. We show next how to find the value u* which
minimizes

u'by(x)/ao(x)
f ®(uz) de. (2.3)

Au)=2 fw Go(x) dx

- o0

Noting that |, , z¢(z) dz = — (), we see that

1 , u'bo(x)/og(x) b
srw=[ [] p(uz) dz -+ i {By(x)foo(x)}

— 20

x P{u lbo(x)/oo(x)}] oo(x) dx

zu—ZA(ur+1)’
where

Aw)=| [rvbo(x) {0bo(x)/0(x)} — 3o(x) ¢{vbo<x)/ao(x)}] dx.

The “optimal” value u* of u is a solution of the equation A(u"*')=0. A
notable feature of the function A is that it involves only one integration;
the function 4 involved two.

We show now that the equation A(v)=0 has a unique positive solution.
Put L(v)=v"'A(v), and observe that

L(0)=]_ {rbios '6(vbo/ae) + o0 $(oboa0) + biog 'olubofoo)} dx
=j [(r+1)b36g ' + 0402} P(vbo/oy) dx.
R”d

The right-hand side is assuredly positive, proving that L(v) is continuous
and strictly increasing. Also, L(0)= — co, and as v — o0,

L(v)= — -[Rd I:"bo{l — D(vho/0o) } + U_lao¢(vbo/00)] dx

5 _j rboI(by < 0) dx > 0.
Rd
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Therefore the equation L(v)=0, and so also A(x’*')=0, has a unique
positive solution.

In practice, the equation L(v) =0 may be solved using Newton’s method,
as follows. Let

H = LYL0) =] [ {rbo@labofoo)— ™ onlubofon)} ds |
X [J {(r+1)b2oy '+ 0,072} ¢(vbo/ae) dx]_ .
R

If v’ is an approximation to the solution of L(v)=0 then v”" =v'— H(v') is a
better approximation, and the approximations converge rapidly on
iteration. This method of minimizing L, loss will be used repeatedly in the
numerical work of Section 4.

The function 4 may be written in more homogeneous form as

A(w)= | {rlvbofoq) (vbo/ao) — (vba/oo)} oo d.

Let v* denote the (unique) solution of A(v)=0. If we are able to alter the
construction of our estimator f in such a way that b, changes to a,b, and
o, changes to a,o0,, for constants a, and a,, then we see from the above
representation of A that v* changes to v*a,/a,. Since the value u* of u
which minimizes A(u) is just the solution of A(u"*')=0, then u* changes
to u*(a,/a,)"’"*" under the transformation. This trite observation is
important in the case of kernel estimators. It means that once we have
derived the value of u* for a particular kernel, we can easily find its value
for all other kernels of the same “order,” as will be shown in Examples 2.1
and 2.2 below.

We now give four examples which illustrate the forms which b,, g, 7,
and § can take. Example 2.1 discusses regularity conditions which are
sufficient for a rigorous proof of result (2.2).

EXAMPLE 2.1. General kernel estimator in d=1 dimension. Put

Jxlny=(nh) =t ¥ K{(x= X,)/h},

j=1

where K is a pth-order kernel—that is, [ |z”K(z)| dz < 0, K is bounded,
and

1 if j=0
f°° 2K(z)dz={ 0 if 1<j<p—1

(=1) e #0  if j=p,
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where p>1 is an integer. If f is bounded and if f'» is bounded and
continuous then

Ax|h)y— f(x)=(c,/p!) h2fPUx) + (nh) = ¢, f(x)* Z, + 0(h")  (24)

as n— o, h=h(n)—0, and nh— oo, where ¢, = ([ K*)"? and Z, =Z,(x)
is asymptotically Normal N(0,1). (See Prakasa Rao [11, p.44ff] or
Rosenblatt [12].) Take h=n"Y27+Dy2 r=2p S=n""2*+1 py(x)=
(c,;/p") f*P(x), and o64(x)=c, f(x)"? Then (2.1) and (2.2) hold with
b=u'b, and o =u"o,.

Let uf denote the value of ¥ which minimizes A(u) (defined at (2.3), with
d=1 and r=2p) for a particular pth-order kernel K,. Let ¢, and ¢,, be
the versions of ¢, and c,, respectively, in the case of this kernel. Then if u*
is the value of u which minimizes A(u) for any other pth-order kernel,

”*=u(’)k{(cmCz)/(Clco,z)}l/(2p+l), (2.5)

where ¢, and ¢, are computed for the kernel K. Therefore, once we know
the value of u* for a particular kernel, we can easily derive it for all other
kernels of the same order.

The effect of changing from one pth-order kernel to another is only to
alter the values of ¢, and ¢,. Suppose that after such a change, ¢, —a,c,
and c¢,+>a,c, for constants a, and a,. Then L, distance, which is
asymptotic to 84 (u)"4, where

3 ()= | dx f ubo(x) — u '0,(x)2|7 §(2) dz
(compare (2.2)), changes to d4}(u)", where
x;(u)sjdx fm u'a bo(x) — u ™ 'ay04(x)z|? $(z) dz

= (alaa)q/(r“) }*q{(al/az)l/(r+l)u}-

Notice that inf, 27(u) = (a,a5)?"* ! inf, 4 ,(u), implying that no matter what
the value of q, the optimal kernel is the one which minimizes a,a5. For
example, the Barlett-Epanechnikov kernel [2, 6], which is known to be
optimal in the sense of minimizing L, distance when p =2, is also optimal
in any L, metric (1 <g<oo) when p=2. In particular it is optimal in the
L, metric. The argument above applies without change to d-dimensional
kernel estimators, and so the d-dimensional version of the Bartlett—
Epanechnikov kernel [3] is optimal in any L, metric.

The easiest way to give a rigorous proof of (2.2), here and in the other
examples, is to establish “pointwise convergence” of the integrand, that is,

5-IE|f(x)—f(x)|_>j°° b(x) — a(x)z] §(z) dz,  forallx, (2.6)
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and then prove convergence of the integral by applying a version of the
dominated convergence theorem. Pointwise convergence is easily proved in
all four of our examples, under the assumption that f and the derivatives of
f appearing in b are bounded and continuous. Result (2.2) follows readily
from the pointwise convergence in (2.6), if f vanishes outside a compact set
(and, in Examples 2.1 and 2.2, if K is compactly supported). The case of
compact support is paid particular attention by Devroye and Gyérfi [5] in
their study of the L, metric. More general situations can also be handled,
as we show in the next paragraph.

The convergence in (2.2) is usually uniform, in the following sense. (We
treat only the case of Example 2.1.) Define h, =n =27+ and let A(u)
be as in (2.3). Then we have:

THEOREM 2.1 (d=1). If K is a compactly supported pth-order kernel for
some p=1; if E(|X,|' %)< o for some ¢>0; if f is bounded; and if {17 is
bounded, continuous, and integrable; then

nP et [T B | fxlh,) — f(x)] dx = 4) + o(1) 27)

uniformly in ue [C~ 1, C], for each C > 1. Furthermore,
inf |7 E|f(xlk) = f(x0)] dx~n= 720+ 0 ju®), (28)
h>0V_

where u* is the unique value of u which minimizes A(u).

A proof of Theorem 2.1 is given in Section 5. The techniques are not
specific to d=1 dimension, and the theorem may be readily generalized to
multivariate cases. The condition E(JX,|'**)< oo used in the theorem is
close to being necessary for results of this type, since the function A(u) is
not even well-defined for densities such as the Cauchy which have
E{|X,|=c0). (The reason is that | /> =0.)

EXAMPLE 2.2: Nonnegative kernel estimator in d > 1 dimensions. Put

Fxlh) = ()= 3 K{(x— XA,

j=1

where K is a bounded d-variate probability density satisfying
§1z1? K(z) dz < o0 and [ zK(z) dz =0. Let

1/2
¢ EJW 2’K(z)dz  and ¢, = {wa K3(z) dl} ’
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where z; denotes the jth component of z and it is assumed that the integral
defining ¢, does not depend on j. If f is bounded and if all the second
derivatives of f are bounded and continuous then

Jlxlh) = flx)=(c\/2)R* V[ (x) + (nh¥) "2 ¢, f(x)'7 Z, + o(h?) (29)

as n— o, h=h(n)—>0, and nh’— oo, where V?f=3,(8/0x,)’ f is the
Laplacian and Z, = Z,(x) is asymptotically Normal N(0, 1). (See Prakasa
Rao [11, p.182ff] or Rosenblatt [12].) Take hA=n—"YE+4y24 r=4/d,
d=n"Y4*4 b (x)=(c,/2) V*f(x), and o4(x)=c,f(x)"% Then (2.1) and
(2.2) hold with b=u"b, and c=u"'0,. An analogue of formula (2.5)
describes the effect of changing from one kernel to another.

ExAMPLE 2.3: Histogram estimator in d > 1 dimensions. Divide all of R?
into a lattice of cubes with side length A. Given xeR? let A(x)=
ITi<,<ala;—%3h a;+5h] be that cube in the lattice containing x, and
write N(x) for the number of observations from the sample which fall into
A(x). The histogram estimator of f(x) is

flx) = N(x)/(nh?).

If fis bounded and if the first derivatives of f are bounded and continuous
then

f(x) f(X)~Z (a; ~x;) fj(x) + (nh*) 17 f(x)"2 Z; +o(h), (2.10)

as n— o, h—0, and nh? - oo, where x; denotes the jth component of x,
f{x)=(0/0x;) f(x), and Z, is asymptotlcally Normal N(0,1). (See
Section 5 for a sketch of the proof.) Take h=n"YE*+*2y¥4 r=2/d,
S=n"Y4+2 po(x)=h"' Y, (a; — x;) f(x), and a4(x) = f(x)"/*. Then (2.1)
and (2.2) hold with b=u'b, and c=u"'a,.

This example differs from the previous two in that b, depends on A.
However, that dependence turns out to be unimportant, as we now show.
Remember that our general asymptotic expression for L, distance is dA(u),
where

i(u)sfm dx f Who(x) — u~ ag(x)z| $(2) dz; @2.11)

see (2.2). In the present example,

saf [ |

}d: £0)—u"oox)z| d(2) dz,
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where ,=h " '(a; — x;)€(— 4, $). As h >0, A(u) converges to

| dxdy [* Wwholx, y)—uoo(x)z] 9(2) dz,
RIx (—1/2.1/2)4 —

where y=(y,, .., y,) and by(x, y) =3, ,<a ¥, f{x). This has the same
form as the right-hand side of (2.11), provided we replace b,(x) by by(x, y)
and the integral over RY by an integral over R?x(—1, )% Of course,
neither by(x, y) nor o4(x) depends on # or u.

With these trivial changes, the argument given in the first part of this
section goes through as before. In particular, if we define

A= [robo(x, y) @ {vbo(x, ¥)/oo(x)}

RYx (—1/2,1/2)¢
—0o(x) @{vbo(x, y)/oo(x)}] dx dy

and L(v)=v~'4(v), then L is continuous and strictly increasing from — co
to a positive number, and the value of u such that h=n—1/(@¢+22d
asymptotically minimizes L, distance is the unique positive solution of the
equation L(x"*')=0 (or equivalently, of A(«"*')=0). The solution may
be found rapidly by using the iteration argument given earlier in this
section.

Reiterating, the only change we need make to our earlier theory to treat
the case of a histogram estimator is to replace the bias term by(x) by a
function by(x, y) of y as well as x, and to integrate over y as well as x. The
next example shows that to treat the case of a smoothed histogram
estimator, or histospline, or frequency polygon, the only requisite change is
to replace both by(x) and ay(x) by functions of y as well as x, and to
integrate over x and y.

EXAMPLE 2.4: Frequency polygon estimator in d =1 dimension. Divide R
into a lattice of segments, each of length 4 and having the form
(t—1h,t+1h] for some ¢. Any xe R may be expressed uniquely in the
form x=a+nh, where 0<#<1 and a is the midpoint of one of the
segments. Let A,(x)=(a—1ha+ih] and 4,(x)=(a+ih,a+3h], and
write N;(x) for the number of sample values lying in A,(x). The frequency
polygon estimator of f(x) is

Jx)={(1—=n) N\(x) + nN,(x) }(nh) ".
If fis bounded and /" is bounded and continuous then
S~ f(x)=ERf"(x)(3n—3n* + )
+(nh) =2 f(x)'2 (1= 2+20%)2 Z, +o(h?), (2.12)
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as n— o0, #—0, and nh — co, where Z, is asymptotically Normal N(0, 1).
(See Section 5 for a sketch of the proof.) Take h=n"""u? r=4, 6=n"%">,
bo(x) =3 f"(x)(3n—3n*+%), and ao(x)= f(x)"* (1—2n+2n%)"2 Then
(2.1) and (2.2) hold with b=u'b, and o =u"'g,.

As in the previous example, the dependence of b, and g4 on 4 is unim-
portant. To appreciate why, observe that asymptotic L, distance equals
6A(u), where A(u) is given by (2.11), and just as in Example 2.3, A(u)
converges to

[ axay[" wbetx y)—utoolx, y)2l $lz) dz
R x (0,1) -0

as n-o o0, where bo(x, y)=L1f"(x)By—3y>+1) and oy(x, y)=
S(x)'2 (1 =2y +2y*)'2 Neither b,(x, y) nor a,(x, y) depends on r or u. If
we replace bo(x) by by(x, y) and g4(x) by oy(x, y), and integrate over x
and y rather than just over x, then the theory in the first part of this section
goes through without changes.

3. ADAPTIVE MINIMIZATION OF L, DISTANCE

In this section we concentrate on kernel estimators. Variants of our
arguments may be used with other estimators, such as histogram
estimators. We shall introduce an adaptive, data-driven method for
minimizing L, distance, and prove that it does indeed minimize L, loss in
an asymptotic sense.

Suppose the data are in d>1 dimensions, and define the kernel
estimator

Fx)=Fixlh) = (k) 3. Ki(x— X,)/h}.
j=1

Examples 2.1 and 2.2 in the previous section discussed such estimators in
detail, and gave instances of the decomposition of /— f into bias and
variance components; see (2.4) and (2.9). Let

W)= E|Jxih) = f(0)] d

denote L, distance. As we showed in Section 2, if &, =n {90+ D122 for 3
correctly chosen r >0 (depending on the kernel X), then as n— oo,

J(h,)~n= TR0 (0) (3.1)
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uniformly in ue [C~!, C] for any C> 1, where

Au)= jm dx |7 |u'bo(x) —u~oo(x)2l 4(2) d,

oo(x) is proportional to f(x)'%, by(x) is proportional to a linear com-
bination of derivatives of f, and >0 is a variable parameter. Furthermore,

inf J(h)~n~ 7120+ D1 (%), (3.2)

h>0

where u* is the unique value of # which minimizes A(«). (Theorem 2.1 gives
regularity conditions sufficient for (3.1) and (3.2).) Of course, both b, and
o, are unknown, and so any attempt at minimizing 4 using only infor-
mation in the data must involve explicit or implicit estimation of b, and o,.
In the present section we discuss the explicit approach to this problem.
Let b, and &, be L, consistent estimators of b, and a,, respectively. That
is,
J., 1B =bol + 160 = 00l) 0 (33)

almost surely as » — o0. Assume too that jEO =0. Later in this section we
shall discuss candidates which satisfy these conditions. Put

i(u)sz dx jm u'by(x) — u~"6o(x)z] §(2) dz. (3.4)

The argument given in the early part of Section 2 shows that there is a
unique #* >0 which minimizes A(u), and that #* may be found by
iteration. Indeed, if we define a sequence vy, vy, v;, ... by

v =v;—H@), j>0,
where

H(v)= ['[Rd {"50‘15(050/&0) - 0—160(15(”50/&0)} dx:|

-1

X |:f {(r+1)b365 " + 6072} $(vho/) dx] ,
IRd

then the sequence {v;} converges to that value #*, 0<* < oo, which is
such that 4* = (§*)/+ 1),
Remember that u* is the unique u minimizing A(u). In view of (3.3) we
have, for any C> 1,
sup  |A(u)— Au)| =0 (3.5)

C-lsugcC
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almost surely, and also 4* — u* almost surely and A(ii*) — A(u*) almost
surely. We shall define our adaptive, data-driven window to be

E*Enél/{d(wl)}(ﬁ*)Z/dh (3.6)

Let h*=n Y+ (y*)24 be the deterministic, asymptotically optimal
window. Then A*/h* — 1 almost surely and J(A*)/J(h*)— 1 almost surely.
(For the latter, use (3.1) and (3.5).) Indeed, noting the asymptotic relation
{3.2), we have

J(ﬁ*)/hin{) J(h) =1 (3.7)
almost surely. In this sense, the adaptive window A* provides asymptotic
minimization of L, distance.

Observe that J(h*) is not the same as L, distance computed for f{x|h*).
The latter would be

JL EIFG*) — /) d,
whereas
) =] AEISGAR) — S5

It would be more in keeping with the fact that A* is a random variable to
examine A* in the context of minimizing raw L, distance, defined by

Jny= |1 fxih) = £ d

(Of course, J=FE(J).) A natural question to ask i§ whether A* is
asymptotically as good as the window which minimizes J; that is, whether

J(h*)/inf J(h) -1 (3.8)

h>0
almost surely. This result is analogous to (3.7), and if it were true it would
provide another sense in which the adaptive window A* was asymptotically

optimal. In fact, (3.8) is true under appropriate regularity conditions. It
follows from (3.7) above and (3.9) below.

THEOREM 3.1 (d=1). If K is compactly supported and Holder
continuous, and if f is bounded, then

{hin{)f(h)}/{hin{)J(h)}—vl and  J(h*)/J(h*) -1 (3.9)

almost surely as n — oo.
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We now give examples of the estimators b, and é,. For notational
convenience we concentrate on the case of d=1 dimension, which was the
subject of Example 2.1. In this circumstance, Theorem 2.1 gives regularity
conditions sufficient for (3.1) and (3.2). The techniques used to derive
Theorem 2.1 and Theorem 3.2 below are not specific to d=1 dimension,
and our results are readily extended to multivariate cases.

Define

Felh)y=(nh)~" ¥ K{(x = X;)/h},
j=1
where K is a pth-order kernel for some p > 1. The versions of b, and o,
appropriate to this context are by(x)=(c,/p!) fP(x) and o4(x)=
¢, f(x)"?, where ¢, =[z7K(z) dz#0 and ¢, = ([ K*)"% see Example 2.1.
As our estimates of f*” and f'? we shall take
FPx)= (nhp+ )= Y KP{(x— X))/h, }

1

I1-M=

J
and

n 1/2
fix)?= [(nhz)‘1 > Kz{(x—Xj)/hz}] ,
j=1
where K, and K, are kernels (possibly the same as K), K, is nonnegative,
and it is assumed that K{» is well-defined. Of course, f{?' is just the pth
derivative of an ordinary kernel estimator. Its existence as a numerical
quantity does not require existence of /1#), but for convergence we do need
to assume that the pth derivative is well-defined and finite. Our estimates of
by and o, are

bo(x)=(c,/pY) JPU(x),  Golx)=cr folx)"2. (3.10)

Notice that | 5, =0. The only other property required of 5, and 4, is the
L, convergence described by (3.3), and that follows from the following
theorem.

THEOREM 3.2 (d=1). Assume K, and K, are bounded, compactly
supported, and integrate to unity; K\P) is well-defined and bounded, K, is
nonnegative; E(|X,|'* %)< oo for some ¢>0; [ is bounded; f'P) is bounded,
continuous, and integrable; and h,, h, — 0, nh?? *1/log n - o0, and nh, - .
Then

["17w—ror-o (3.11)

and

[* 1m0 (3.12)

almost surely.
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The condition E(JX,|'*¢) < oo was imposed also in Theorem 2.1, and as
explained there it is needed to exclude fs such as the Cauchy density, for
which the theorem fails. The condition #h?7+! — oo is necessary for weak
pointwise consistency of f(#), and our assumption that nh?7*+!/log n - oo is
only slightly more restrictive. Nonnegativity of K, is needed to ensure that
fY? is real-valued.

In conclusion, we point out that if £, K,, and K, satisfy the conditions in
Theorem 3.2, if the pth-order kernel K satisfies the conditions in
Theorem 3.1, if b, and 6, are defined by (3.10), if #* denotes the value of u
minimizing A(«) (defined at (3.4), with d=1 and r=2p), and if A* is given
by (3.6), then results (3.7) and (3.8) hold:

J(h*)/ inf J(h) 1 and  J(h*y/ inf J(h) -1

almost surely. In these two senses, our adaptive, data-driven window h*
provides asymptotic minimization of L, distance. The next section
describes numerical applications of this idea.

4. NUMERICAL RESULTS

In this section we confine attention to d=1 dimension, and to sym-
metric, nonnegative kernels. This amounts to taking p=2 in Example 2.1,
and means that the “asymptotically optimal” window in the sense of
minimizing L, distance is #* = n~"*(u*)?, where u* is that value of u which
minimizes

i(u)zfoo dx%ro u“lclf"(x)—u_‘czf(x)l/zz #(z) dz.

2

(Here ¢, =[2z’K(z)dz and ¢, = ([ K*)">. See Example 2.1 for details.)
Work in this section falls naturally into two parts. First, we discuss
numerical values of the constant C*) = (4*)? in the formula h* = CVn 173,
for the case where f is either Normal or a mixture of two Normals. Then
we show how to implement the adaptive method described in Section 3,
and illustrate those ideas by applying our techniques to simulated data.
Throughout the section we stress differences between L, and L,
minimization.
Put g(x)=c,(2¢;) " f"(x)/f(x)"?, and define

HE)=o [ T4og(x) D{og(x)} — ${vg(x)}] f(x)"? dx

<7 tstoe+ 110log(} S0 d)
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Define the sequence vy, vy, v;, ... by v;,; =v; — H(v;), j= 0, where v >0 is
arbitrary. We showed in Section 2 that this sequence converges to the num-
ber v* such that u* = (v*)'%, Thus, h* = CYn =15, where C'V = (v*)*°. (If
vo is chosen much larger than v* then v, may be negative, due to the fact
that L is concave. This difficulty is easily overcome by using a smaller value
of vy.)

Once we know the value of A* for a particular symmetric, nonnegative
kernel K, we can easily derive it for all other kernels of this type. Indeed,
let ¢ be the version of A* for K, and let ¢, and ¢, , be the corresponding
versions of ¢, and ¢,. Then the value of 2* for the kernel X is

h* = h(’f{(Co,lcz)/(ﬁco.z)}z/s;

see (2.5). In the next three paragraphs we work with the Bartlett-
Epanechnikov kernel, K(x)=3(1—x?) if |x|<1, 0 if |x|> 1. This K is
bounded, compactly supported, and Holder continuous.

When f is the standard Normal density and K is the Bartlett—
Epanechnikov kernel, the constant C*) in the formula A*=C"p~173
is CW=2279. By way of comparison, the window C@n~'° which is
asymptotically optimal in the sense of minimizing L, distance has
C? =2.345. Since C'V < C® then minimizing L, distance provides slightly
less smoothing than minimizing L, distance. However, the two constants
are remarkably close. In the case of L, distance, it is sometimes suggested
that when the data distribution is unknown, the window be chosen as
though the data were Normal, resulting in h=2.3456n""° where ¢ is
sample standard deviation. The analogue of this proposal in the case of L,
distance is of course h=2.2796n"'/, provided the Bartlett-Epanechnikov
kernel is in use.

Recall from Section 2 that minimum asymptotic L, loss is n~%° inf, A(u),
where A(u) is defined at (2.3). Devroye and Gyo6rfi [, pp. 78-79] give
bounds for inf, A(x). In the case where f is standard Normal and K is
Bartlett-Epanechnikov, these bounds (together with the exact value) are

1.002 <inf A(u) =1.022 < 1.341.

The lower bound in particular is remarkably accurate.

Devroye and Gyorfi [5, p. 107] also suggest an approximation to the
asymptotically optimal window: h~ 1.664n~'> compared to the actual
value 2.279n '/, The discrepancy here is due to the fact that the function A
is quite flat in the vicinity of the minimizing value, u* = 1.510 (= 2.279'?).
Indeed,

[A(1.45) — A(u*)|/A(u*)=0.006, |A(1.55)— A(u*)|/A(u*)=0.003.
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It is much faster to derive u* using the iterative argument described in the
second paragraph of this section, than to find it by a direct attempt at
minimization.

Table 4.1 lists values of C'"), C®), and the ratio C'V/C® for several
equal-proportion, two-component Normal mixtures, with densities

S (x)=12ra?) " exp{— (x + 1)*/26°} + $(2n0?) > exp{ — (x — 1)*/26°}.

(The only variable parameter governing f is the common variance, ¢°.) In
all these cases the ratio C")/C® is less than one. This occurrence seems to
be more common than CV/C® > 1, although the latter can arise. A case in
point is that of equal-proportion, two-component Normal mixtures with
means (1, —1) and variances (1, 1/10), where C"’=1.03 and C*¥=0.98.
The closeness of the ratio C!)/C® to unity in many cases of interest
means that from a practical viewpoint there is often little to choose
between a density estimate which has been optimised in an L, sense and
one which has been L, optimised. Graphs of f(x|#) for h=C"n~" and
h=CPn~5 are virtually indistinguishable when f is a Normal mixture.
We conducted a series of experiments using the adaptive window selec-
tion rule suggested in Section 3. We took f to be the standard Normal den-
sity, and K, K, K, all to be the standard Normal kernel. (Since this K does
not have compact support then, strictly speaking, results in Section 3 do
not apply to it. That may be remedied by using arguments from [7].) We
selected the window h,, needed in the construction of £12, by squared-error
cross-validation. Thus, f(-|k,) asymptotically minimizes L, loss. We took
h,, needed for /%, to be simply 43/%, in the knowledge that a window of size
n~ '3 is optimal for estimating f, whereas a window of size n~"° is optimal
for estimating f”. Constructing #* in the manner described in Section 3, we

TABLE 4.1

Values of C", C® for Bartlett-Epanechnikov Kernel K and for Equal-Proportion, Two-
Component Normal Mixture Density f with Means (1, —1) and Variances (¢2, 6?). Windows
COp V5 C®n~15 Are Asymptotically Optimal for L,, L, Loss, Respectively.

o2 Y ) C(l)/C(l)
© ~2279a ~2.345¢ 0972
52 11.6 12.0 0972
5! 5.60 5.80 0.966
50 3.01 3.26 0.925
51 1.15 1.18 0.969
572 0.524 0.539 0.972

0 ~2279 ~2.345¢ 0.972
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F1G6. 4.1. Numerical examples of adaptive procedure discussed in Section 3, with f, X, K|,
K, all equal to standard Normal density ¢. Solid curve is f(-}4*) (asymptotically L, optimal),
dashed curve is f(-|h,) (h, found by squared-error cross-validation; asymptotically L,
optimal), and dotted curve is true f. Sample size is n = 100.

defined A* =n~"5(u*)% (The quantity C™" = (5i*)? is a consistent estimator
of CV.) We compared graphs of f(-|A*) and f(-|#,). For large n (n>200)
there was little difference between the true curves, although h* was a little
more robust than /4, against sampling fluctuations. This appears to be due
to the fact that 2*/(CVn /%) converges to unity at rate n~2° (the rate of
consistency of f”(-|h,) for f"), whereas h,/(C®n~) converges to unity
only at rate n ' (see [8]). For n=100 there was a tendency for CV) to
underestimate C™ and for n'/*h, to overestimate C®), but neither A* nor 4,
gave curves which were closer, on average, to the true density. Figure 4.1
depicts two typical results.
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5. PrROOFS

Throughout our proofs the symbols C, C,, C,, ... denote positive generic
constants, possibly different at different appearances.

Proof of Theorem 2.1. We show first that for any C>1 and h< 1,

10,1, O) = [  EIfixlh) = f(x)] dx < g(C){ (nh) ">+ h7}, (5.1)

|x|>C

where g does not depend on » or 4 and converges to zero as C — 0.
Notice that

(p— D)V Ef(xh) = f(x)] =

h”fw K(z) dz
le fPO(x—ths)1—1)P~di|, (52)

and that if |hz|<C and O<it<l1, {x:|x|>2C}<{x:|x—1thz|>C}.
Therefore if A< 1,

1(n, h, 2C) Ejl e |Ef(x|h) — f(x)| dx
<w{[” KE@IE] e
— o |l¥|>C

LG A
|hz) > C —

< £,(2C) A%,
where

£:20)=[" [K(z) dz |

- yl>

. |f ()| dy

oo

+cr [T k@[T 1100 b,

- —

Also, var{ f(x|h)} < (nh) ' | K*(z) f(x — hz) dz. Given a> 1, put

1/2
gz(C)E{L)C(IHXV)"dX} .
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Notice that 1+ |x{*<2%(1 + |x — Az|* + [hz]*). Therefore if #< 1,

Ln h,C)= fl _Lvar{ FOxlh)}12dx

x| >

o . 12
<) [ var(Flaib}1 + 151 d |
< &:(C)(nh)

where

8= 02| [* K a [* (141319 ) s

o 12
+j I21* K(z)? dz] .

This quantity is finite if o is sufficiently close to unity. The desired result
(5.1), with g= g, + g, follows from the estimates in this paragraph and
the fact that I<1I, + I,.

Let by and o, be the functions defined in Example 2.1. Put

AMu, C)= J dx Jm |'bo(x) —u ‘oo(x)z]| ¢(2) dz,

lxisC -

where r=2p. Then for any C, > 1,
lim sup  |A(w, C;)— A(u)| =0. (5.3)

- w ue 71

Techniques used to prove Theorem 1 on p. 78 of [5] are readily adapted to
show that for any C, >0,

sup
uelcy ' ¢l

np/(2p+l)f E|f(x|h,)— f(x)] dx — Au, C,)| >0 (54)

x| < C2

as n — 00. Result (2.7), with uniform convergence, follows from (5.1), (5.3),
and (5.4).

We showed in Section 2 that the continuous function A has a unique
minimum, occurring at the point »*. Result (2.8) will follow from this fact
and (2.7) if we prove that for some C >0,

J(h) = C[min{(nh)~ 2, 1} + min(h?, 1)] (5.5)

683/26/1-6
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whenever n> 1 and A>0. Now,

3E\f—fIZE\f—Ef +Ef — fI+2|Ef - f12 E|f — Ef | + |Ef — 1),
and so

3=J, +J,, (5.6)

where J, ={ E |/ — Ef| and J, = [ |Ef— f|. We may show from (5.2) that

lim inf j |Ef (x|h) — f(x)| dx >0,
and so there exist C,, C, >0 such that J,(h) > C,h”* whenever 0<h < C,.
The inequality Jy(h)>C; for A>C, is easily established separately.
Therefore J,(h) = C, min(h?, 1), for all A>0. The desired result (5.5) is a
consequence of this inequality, (5.6), and the lemma below. (We state and
prove the lemma for d-dimensional data, since that form will be needed in
the proof of Theorem 3.1.)

LEMMA 5.1 (d=1). If the d-variate kernel K is bounded, vanishes outside
a compact set, and integrates to unity, if [ is bounded, and if the d-variate
kernel density estimator f is based on K, then for a constant C>0 not
depending on n or h, such that forn21 and 0 <h<1,

| E17(xl) ~ Ef(xlh)] dx > € min{(nh®) =2, 1},
RY

Proof of Lemma 5.1. By an inequality for moments of sums of indepen-
dent random variables [1; 5, p. 90],

| E| f(x|h)~ Ef(x|h)| — (2/m)" (E | f(x|h) — Ef(x|h)|*} "2} < Cy(nk?) "1,

where C, does not depend on x, n, or A. Simple calculations show that for
h?*>n~"! and for some bounded region %,

[ (E17 - B2 > Colnn®y 12
K3
Therefore if /7> Cyn~! and Cj is sufficiently large,

| EIf- B4 Cynny 2.
R

This proves the lemma for 47> C,n~".
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To treat the case 47 < Cyn ™!, suppose K vanishes outside a ball of radius
s centred at the origin. Then f(x|h) 0if [x—X;| >shforeach j, 1< j<n
Therefore if /< Cyn~" and n is large then the chance that f(x|h) equals
zero exceeds

p(x;n)y= {P(|x — X| > sh)}" = (1 — Boys?h?)"
=C, exp(—nBvqsdh"’) =>Cs >0,

where B is an upper bound to f, v, equals the content of the d-dimensional
ball of unit radius, and C; does not depend on x, n, or h. Hence

| EIF=EfI> ] P(xin)|Ef(xlh) dx

>C5 =C5’

de Ef(x|h) dx

which completes the proof of Lemma 5.1.

The condition that f be bounded, imposed in Theorems 2.1 and 3.1 and
in Lemma 5.1, may be relaxed. We do not pursue such generalizations here,
because the condition of boundedness is mild, natural, and commonly
imposed in work of this type—see, e.g., [8, 14].

Proof of Theorem3.1. Our proof uses a very powerful result due to
Devroye [4]. We state it here, for convenience.

LeMMA 5.2 (d=1). If K is bounded and compactly supported then there
exist positive constants C, C,, and Cs, depending on K but not on f or n,
such that

sup P{|J(h)—J(h)| > ¢} < C, exp(— C,ne?)

h>0
h Cin~?<gex
whenever Cin séEx L.

Lemma 5.2 is a corollary of Devroye’s Theorem 1 [4]. In fact, Devroye
shows that we may take C; =2 and C, = (32[ |K|)

Let hy, h, be the values of & which minimize J, J, respectlvely It is easy
to see that for a > 0 sufficiently large we have n=* < hy < n” for all large n,
and also

P{n=<hy(n), h*<n® all nzn'} -1

as n’ - . Given ¢>0, let # =#(a, c)={h,, h,, ..} be the nonrandom
sequence defined by n “=h, <h,<---<h,,_,<n°<h,, <--- and
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hipy —h, =n“',r i>1. Foreach he # =[n"¢ n“], let H(h) be a value in #
which minimizes |h — H(h)|. By Holder continuity and compact support of
K, we may choose ¢ = c(a) so large that for some C>0,

sup |J(h) = J{H(h)}| < Cn ",

he s

no matter what the sample & = {X, .., X,} or the value of n. This
inequality entails |J(h)—J{H(h)}|<Cn~' for all he#, and so with
A=J—J we have

sup |4(h)— A{H(h)}| <2Cn~! (5.7)

he #

uniformly in samples Z.
Suppose we prove that for some >0, C, >0, and all sufficiently large n,

inf J(h)= Con=12%7, (5.8)
he #
Taking ¢=n""~""2 in the lemma we see that for large n,

P{ sup |4(h)|>n=0""2}< Y P{|A(h)|>n" (-2}

lgjsm j=1

< Cymexp(—C,n").
Therefore, since m=0(n** ) as n > o0,
Y. P{ sup |4(h)|>n""""?} <00,
n=1 I1<jsm
implying (by the Borel-Cantelli lemma) that

n 2 sup 14(h) -0

1<jsm
almost surely. In view of (5.7) this entails

n' =772 sup |A(h)| -0

he s

almost surely, and together with (5.8) this gives

{inf f(h)}/{hin£ Jh} -1 and  Jh*)J(h*) > 1

almost surely. Theorem 3.1 follows: note the property mentioned in the
second sentence of the previous paragraph.
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It remains to prove (5.8). Recall result (5.6): 37> J, +J,, where J, =
{E |/ — Ef| and J, = |Ef — f|. We know from Lemma 5.1 that for A< 1,
Ji1 = Cmin{(nh?)~'2, 1}, Inequality (5.8) follows from these estimates and
the fact that for some & >0,

J, = C min(h%, 1). (5.9)

We conclude by proving (5.9).

Since K is bounded then for each ¢>0 there exists #’>0 such that
[f1<e for all n=1, all x, all samples &, and all h=#'. Therefore we
trivially have (5.9) for sufficiently large A—say for A= h". If h<h” then

B~ fl<C=26up /)| 1K

so that
Jzzc—lf |Ef — f12> C'he
Rd

for some ¢&>0, the second inequality following from Lemma 1 of Stone

[14].
Proof of Theorem 3.2. (i) Proof of (3.11). Result (3.11) follows from

| 1B — 11 0, (5.10)

r’ |f— Ef”| >0  almost surely, (5.11)

and we prove these limit theorems separately.
(i.a)  Proof of (5.10). Observe that

B = fx)= [ KA} [P —hyz)— [ P(x)} d,

and so by continuity of f'#) and compact support of K,

sup |Ef#)(x)— f(x)| >0

Ixj<C

for each C> 0. If K, vanishes outside the interval [ —s, s], and if h,s <1 C,

then
o= ([T k) i
x| € C w© |xl > (1/2)C

Result (5.10) follows from the last two displayed estimates.
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(i.b) Proof of (5.11). We begin by stating a version of Bernstein’s
inequality (see, e.g., Hoeffding [10, p.17]), which we need on three

occasions.

LEMMA 53. If Y, .., Y, are independent and identically distributed with
zero mean and variance 6>, and if each |Y;| <c, then

For any ¢ > 0, the integral on the left-hand side of (5.11) is dominated by

>t><2exp{—%tz(n62+ct)“'}, all t>0.

J

[ pw-gere| 17w
xt<¢

Ixt>¢
o I R T CE
x| >¢& — o0

Therefore it suffices to show that for some sequence £ = ¢£(n) diverging to
+ o0, we have

J' |f{»| -0  almost surely, (5.12)
x> ¢

J |f— Ef(" -0  almost surely. (5.13)
|x| < &

If the support of K is confined to [ —s, s], and if A, is so small and ¢ so
large that ;s <1 ¢, then the left-hand side of (5.12) is dominated by

n

(o) Y [ IKP{(x— X)) dx

j=1"1xI>¢

=1 1X+ x| > x| <s

<Cimhp) ' Y | dx
J

<2C;s(nhf) =1 ) 1(1X;1>58), (5.14)
j=1
where C, =sup |[K{”|. Suppose E(|X,|*)<oo, where a>1. Then
n=P(X,|>1¢6)<Cy¢™% and so if we take &=h;P¥, where
(2a)/(x+ 1)< p<a, we have

E{(nhf)™" Y. I(|X,|>4¢)} < CohR==PVF 0.
j=1

j=
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Furthermore, for each ¢>0 we have by Lemma 5.3,
Y X >58) —n)

qEP[
j=1

<2exp[ — 4 (enh?)* {nn(1 —n) +enhf} 1.

>£nhf]

Now, n(1 —n)< C,h?# < C,h%, and so
g<2exp{ — Cs(e)nhp} = O(n ")

for all k£ >0, since nh?”*! — oo. Therefore, by the Borel-Cantelli lemma,
(nh?)~"' Y I(X,|>4£)->0
j=1

almost surely, which together with (5.14) proves (5.12).
To establish (5.13), put t2(x) = max{t}(x), (14 |x|**) "'}, where

dw=|" KPR fx-hiz)dz

and let & denote the set of values of x € (0, ¢) such that (1 + |x|*) 3(x)> 2.
We shall prove separately that

J |f{P)—Ef{»] >0  almost surely, (5.15)
x| € éixe Py

j |f») —Ef{| -0  almost surely. (5.16)
x| < &x ¢ P

As a prelude to deriving (5.15) we show that the Lebesgue measure of
%, , which we denote by Z(¥,,), is bounded. To prove this, let Y_ have the
uniform distribution on (0, ¢), and observe that (1 + |x|*) t%(x)> 2 if and
only if (1 + |x|*) t3(x) > 2. By Markov’s inequality,

LK) TE{(L+ 1Y) 3(Y)},
and so

L)< [ (1 +1x1%) ti(x) de < o0
2),

uniformly in A, <1, since E(|X,|*) < co. For each ¢> 0, the left-hand side
of (5.15) is dominated by e£ (%) + h;7?+ V(2 sup |K{P|)M,, where
Y AKP(x = X)/hy)

M1Efym1[j=l

- Eng((x-X,)/h,)}} > enh?* 1] dx.

n
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The desired result (5.15) will follow from this observation via Markov’s
inequality and the Borel-Cantelli lemma if we show that for all ¢>0 and
k>0, E(M,)=O(n=*). To establish the latter bound, take

Y;=K{P{(x—X,)/h,} — EK{»{{x— X})/h, },
c=2sup |K{P, t =enhf+!

in Lemma 5.3. Then o® < h,t3(x) < C, by, the latter inequality holding since
S and K{» are bounded. Therefore

$2(no® +ct) 7' 2 Cy(e)(nhp +1)? {nhyt2(x) + nh2+1} !
> C3(£) nh%P*— 15

and so, since nh#**!/log n - o,
E(M,)<2[  exp{—Csle) nhir+!} dx
S

=22(4,) exp{ —Cs(e) nh2r*1}
=0(n="%)
for all £ >0, as required.

Finally, we derive (5.16). For each ¢> 0, the left-hand side of (5.16) is
dominated by

e ()P dv o+ hy (2 sup (K M,

— O

where

M, =| 1{ Y Y,
x| < &x ¢ S ji=1

and Y, is as defined in the previous paragraph. Now, by Holder’s
inequality,

F

— o0

>enhp+ ‘r(x)ﬂ/“} dx

© B/2a
(%) dx < {f (%) (1 + |x])* dx}

© (2x— B)/(2¢)
x{j (1+|xl)‘“"/‘2“‘”’dx}

<

uniformly in A, <1, using the fact that E(|X,|*)<o and «f>2a— .
Therefore (5.16) will follow via Markov’s inequality and the Borel-Cantelli
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lemma if we show that E(M,)=0(n"%) for all ¢>0 and k>0. Apply
Lemma 5.3 once more, with the same values of Y; and ¢ but this time with
t=enh?*'7(x)?* Since 6* < h,t*(x) then

T=T(x)=1(no*+ct)™!
> Cy(e)(nhf +') 1(x)*
x {nhyt(x)* + nh¥+g(x)P} L (5.17)

To bound the right-hand side of (5.17) we treat two cases separately.
First of all, suppose h? < 1(x)?>~ #*. Then

T2 4 Cy(e) nh3r+'g(x) - X b=

>4
> 2(ﬂ/u)—2c4(8) nh%p+1(1 + |x|a)(a7ﬁ)/a’

the second inequality holding when x¢.%,, since the latter statement
means t(x)~>>1(1+|x|*). Second, suppose 4% > 1(x)>*~#/*) Then

T3>} Cy(e) nhp +'2(x)7* > 4 Cole) mhp + (1 + x|2%) 7
2 Cs(e) nhir* !,
the second inequality holding because t(x)*> (1+ |x|**)~! and the third

holding when |x| < ¢ =h; ”2. Combining both these bounds we conclude
that T> Cy(e) nh?7+! when |x| < ¢ and x ¢ &,,. Therefore

E(Mz)szf e~ T dx

ix[<ix ¢ Fo

<4E exp{ —Cq(e) nh2**'} =0(n"*)
for all k>0, as had to be shown.
(i) Proof of (3.12). Observe that

|7 pp-rasf -

o 1,2
<{J7 1A= 70 (1 1) e}
1/2

x{jm (1+|x1%! dx} ,

where (as before) «> 1 is chosen so that E(|X;|*) < co. It is well known
that under the conditions of Theorem 3.2, || f>— f1 =0 almost surely.

683/26/1.7
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(See, e.g., Theorem 1, p. 12 of [5].) Therefore it suffices to prove that with
probability one,

lim lim sup Fo(x)(1 + |x]*) dx =0. (5.18)

Co0 pouon YIxI>C

Suppose K, vanishes outside the interval [ —s, s], and let A, be so small
that 4,5 <4 C. The integral on the left-hand side of (5.18) equals

n

n'y K,(») 1+ X, + hy yI*) dy

o171 X gy > C

<2%sup [Ko1)n ™t Y (141X 11X, > 5 €)

j=1
+@h) [7 1y Kaly) .

Result (5.18) follows from this inequality via the strong law of large
numbers.

Proof of (2.10). The variable N(x) appearing in the definition of f(x) is
Binomial, and from this fact it follows easily that f(x)— Ef(x)=
(nh?) =12 f(x)"? Z(x, n), where Z(x, n) is asymptotically Normal N(0, 1).
Notice too that for y e A(x),

J)=f)+ X (y—x); filx) +o(h),

j=1

so that

n~'E{N(x)} f fy)a

A(x)

aj+ (1/2)h

= hf(x) + Z H ) |

a;—(1/2)h

(t—x,) dt + o(h?+")

= h’f(x)+ h* Z fx)a; —x,) + o(h?* 1),

j=1

Therefore Ef(x)— f(x) =3, (a; —x;) f(x)+o(h).

Proof of (2.12). The variables (N,(x), N,(x), n— N,(x) — N,(x)) have a
joint multinomial distribution, and N (x) and N,(x) are asymptotically
independent and identically Normally distributed. From this fact it follows
that f(x) — Ef(x) = (nh) =2 f(x)'? {(1 — n)* + n*} '/ Z(x, n), where Z(x, n)
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is asymptotically Normal N(0, 1). Also, writing a, =« and a, =a+h, we
have

n BN} =[  flo)dy

Afx)
a4+ (1/2)h
[+ b=
aj~ (1/2)h
+3 (r=xP )] dy + o)

=] S+ @~ x) 1)

1 1
+ 3 {3(aj —x)*+ 1 hz} f”(x)] + o(h*).
Therefore, noting that x —a = nh,

E{f(x)} =(nh)™" E{(1—n) N,(x)+nNy(x)}
= f(x) + K2 f"(x)(3n = 302 + 1) + o(h?),

after a little algebra.
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