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Abstract 

Virtually all common bandwidth selection algorithms are based on a certain type of kernel functional 
estimator. Such estimators can be computationally very expensive, so in practice they are often replaced 
by fast binned approximations. This is especially worthwhile when the bandwidth selection method 
involves iteration. Results for the accuracy of these approximations are derived and then used to 
provide an understanding of the number of binning grid points required to achieve a given level of 
accuracy. Our results apply to both univariate and multivariate settings. Multivariate contexts are of 
particular interest since the cost due to having a higher number of grid points can be quite significant. 

Keywords: Bandwidth selection; Binned kernel estimator; Density estimation; Kernel estimator 

1. Introduction 

1.1. Motivation 

In many circumstances the application of non-parametric smoothing techniques is 
greatly enhanced by the availability of a good automatic procedure for choosing the 
smoothing parameters. An illustration of smoothing parameter selection is depicted in 
Fig. 1. Fig. l(a) is a bivariate kernel density estimate based on n = 640 data points 
representing earthquake activity in the Mount St Helens region of Washington state, 
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Fig. 1. (a) Bivariate kernel density estimate based on n = 640 data points representing earthquake ac- 
tivity in the Mount St Helens region of Washington state, U.S.A. (b) The least-squares cross-validation 
function and two binning approximations to it. The solid curve is the exact function, the dashed curve 
is its binned approximation with M=75  and the dotted curve is the binned approximation with M=150.  

USA. These data are analysed by O'Sullivan and Pawitan (1993). The kernel is 
the bivariate normal density using a single bandwidth for both coordinate directions. 
Silverman (1986) provides a good introduction to kernel density estimation. Fig. 
l (b) shows how the bandwidth was chosen. The solid curve is the least-squares 
cross-validation criterion function (Rudemo, 1982; Bowman, 1984) for these data. 
The chosen bandwidth is the value that minimises this criterion function, in this case 
/~ = 0.0015. 
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The computational labour required to produce the solid curve is considerably heavy 
- involving O(n 2) evaluations of  a kernel function for each value of  the bandwidth. 
Two fast-to-compute approximations of  the criterion function are shown by the bro- 
ken curves. Each is based on the simple binning strategy, described in Section 2, on 
an M × M mesh over the smallest rectangle containing the data. The dashed curve 
corresponds to M = 75 while the dotted curve is for M = 150. For M = 75 we 
see that there is quite a substantial difference between the exact curve and its ap- 
proximation, particularly in terms of  the bandwidth that minimises each. Even with 
M = 150 there is some noticeable approximation error, although not enough to affect 
the results markedly. The main point is that there is a definite loss in accuracy due 
to the use of  binning. 

The aim of  this paper is to study the accuracy of  binning approximations used 
in bandwidth selection algorithms. Since virtually all common rules depend on the 
computation of  a particular type of  kernel functional estimator, the problem reduces to 
the study of  the accuracy of  binned kernel functional approximations. For simplicity 
and brevity our study is confined to the density estimation context. However, the 
conclusions apply to other settings where bandwidth selection is used, such as kernel 
regression. 

Binning techniques for fast kernel estimation were first proposed by Silverman 
(1982), Scott (1985) and Hiirdle and Scott (1992). Wand (1994) describes the ex- 
tension of  binning ideas to multivariate functional estimation. Studies in the approxi 
mation accuracy of  binned kernel estimators include those of  Jones and Lotwick 
(1983), Scott and Sheather (1985) and Hall and Wand (1995). The class of  kernel 
functional estimators studied here was introduced by Hall and Marron (1987) and 
Jones and Sheather (1991). For access to the large literature on automatic bandwidth 
selection methods and their relative merits, see, for example, Cao et al. (1994) and 
Jones et al. (1995). 

Section 2 contains the theoretical results required for our investigation. In Section 3 
we apply the results to a set of  specific problems to develop an understanding of 
the effect of  binning on kernel functional estimation and, therefore, the effect on 
bandwidth selection algorithms. Conclusions of  this study are given in Section 4. 

1.2. N o t a t i o n  

Elements of  a d-vector a will be denoted by (al . . . . .  ad) and the sum of  the entries 
of  a will be denoted by la[. For a scalar p we define a p = (a p . . . . .  aS).  We will 
use ei to denote the d-vector having 1 in the ith entry and 0 elsewhere. For a d- 
variate function u and d-vector r, partial derivatives of  u of  order r will be denoted 
by 

~lrl 

-  xT' . . . 

Lastly, f u ( x ) d x  will be taken to mean integration of  u over the whole of  d- 
dimensional Euclidean space. 
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2. Main results 

2.1. General densities 

Suppose that we observe a d-variate random sample X~,... ,Xn having common 
density f .  An important class of kernel functional estimators is that having generic 
member 

O = n-2 ~ ~ L(X,. - Xi, ) (2.1) 
i=1 it=l 

for some d-variate functional L. For simplicity we will assume that L( -x )  = L(x) 
for all d-vectors x. For example, plug-in bandwidth selection rules use L = K~ r) 
where Ir[ is some even number. Here Kh(t) = K(tl/hl,. . . ,td/hd)/(hl.. .  hd) for some 
d-variate kernel K and bandwidth vector h = (hl,...,hd). Estimators of type (2.1) 
are the main components of virtually all common bandwidth selection procedures 
including least-squares cross-validation, biased cross-validation (Scott and Terrell, 
1987; Sain et al., 1994), plug-in rules (Park and Marron, 1990; Sheather and Jones, 
1991; Wand and Jones, 1994) and bootstrap or smoothed cross-validation (Taylor, 
1989; Hall et al., 1992; Cao et al., 1994). 

In practice, for reasons of  computational speed, it is common to replace 0 by a 
binned approximation. Let 7/ denote the set of integers and 6 be a d-vector having 
all entries positive. Then 

{g~ = (61fll , . . . ,6afa) " f E Z d} 

is a mesh of  grid points in d-dimensional space, equally spaced in each direction. 
We will refer to 6i as the binwidth for direction i. The simple binning rule assigns 
grid counts ct to each of the gt according to 

n d 

c l =  ~ 1 - - [ I ( - ½  < 6~-~X~j - ~ _< 1), 
i=1 j = l  

where I(A) is the indicator of the event A. An alternative binning procedure is linear 
binning (Jones and Lotwick, 1983) for which 

n d 

ct = ~ ~--[(1 -]6~-'X~j - fjl)÷, 
i=1 j = l  

where x+ = max(0,x). Thus, simple binning involves each observation being moved 
to its nearest grid point, while linear binning involves each observation being "lin- 
early split up" among its neighbouring grid points. These notions are graphically 
illustrated by Figure 1 of Wand (1994). 

In each case, the binned approximation of  0 is 

Oa = n -2 ~ ~ L(g,-g,,)c,c~,.  
dE~_a d'EZa 
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The main advantage of  0a is that the number of  distinct arguments of  the function 
L is relatively small and, combined with the fact that a finite number of  the ct are 
non-zero, this can represent enormous savings compared to the O(n 2) evaluations of  
L required for computation of  0; see, for example, Wand (1994). 

Our interest here centres on the accuracy of the approximation of 0 by 0a. For 
this we appeal to the following theorem, the proof of which is given in Appendix A. 

Theorem 1. Suppose  that  the third-order par t ia l  derivat ives o f  L are each con- 
t inuous a n d  b o u n d e d  L e t  6i ---+ 0 f o r  i = 1 , . . , ,  d, such that  6i/6j --~ Cij where  

0 < Cij < co. I f  Oa is based  on s imple  binning then 

d 6/2(n _ 1) [E{L(e,)(X 1 _X2)2} E{(O - 0a) 2 } = ~ ~n- ~ 
i=] 

q - ( n -  2)E{L(e ' ) (X,  -X2)L(e~)(X,  --)(3)}] q-o Z 6i6j . 
i=1 j=l 

I f  O~ is based  on linear binning then 

a a4 
E { ( O - O a ) 2 }  = Z 180n 3 ((1 q- 5n)L(2e')(O) 2 

i=1 

+(2 + 10n)(n - 1 )L(2ei)(O)E{L(2e')(X1 - X2)}  

+5(n - 1 )(n - 2)(n - 3)[E{L(ze')(X, - )(2)}] 2 + 1 l(n - 1 )E{L(Ze*)(X1 - )(2) 2 } 

+21(n - 1 )(n - 2)E{L(2e')(X, - X2)L(2e')(X, - )(3 )}) 

+ ~ Z 6262 (nL(ee')(O)L(zeJ)(O) q- 2n(n -- 1)L(2e~)(O)E{L(ze')(X, - X2)} 
is~J 36n 3 k 

+(n - I )(n - 2)(n - 3)E{L(ee')(X, - X2)}E{L(2e,)(X, - )(2)} 

+2(n -- 1 )E{L(2e')(X, - X2)L(2eJ)(Xl - X2)} 

+4(n - 1 ) ( n -  2)E{L(2e')(X, -X2)L(2ej)(X1 - X3)})  ~ -o  Z 6262 - 
i=1 j=l / 

The most noticeable feature of Theorem I is that, for linear binning, the mean 
squared distance between 0a and 0 has terms proportional to 6/26~, while the rate 
is only 6i6j for simple binning. Therefore, linear binning has a distinct advantage 
over simple binning in terms of asymptotic approximation error. For finite grids 
the dominance of linear binning is not as clear since the constant multiples are not 
comparable for general L and f .  To develop a better understanding of the relative 
and absolute performances of each binning strategy in practice it is necessary to 
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study individual examples, and this will be done in Section 3. For this it is desirable 
to have a set of  examples for which the constant multiples are relatively simple to 
calculate. This is provided by the following subsection. 

2.2. Normal mixture densities 

The difficult-to-calculate quantities in the expressions of  Theorem 1 are of  the 
form 

Ar ---- E{L(r)(x1 -- X2)}, 

Orr, ~ E { L ( r ) ( x ,  - X2)L(r ' ) (X l  - X 2 ) } ,  

Crr, ~ E { L (r)(x1 -- X2 )L(r ' ) (X,  - X3)}.  

However, it is possible to obtain exact closed form expressions for Ar, Br~, and 
Crr' if L is based on the normal kernel and f is a normal mixture density. 

For d-vectors /2 and a, where a has all entries positive, let 

d 
@~(x - #) = (27z)-a/2 I I  exp{-  (xi - #i)z/(2rr2 )}/a,- 

i=l 

Note that ~G("- #) is simply the density of  the d-variate normal distribution with 
mean vector # and covariance matrix diag(a 2). Let h and h' be vectors of bandwidths. 
The data-dependent component of  most of  the common bandwidth selection criteria 
can be written in terms of  expressions of  the form given by (2.1) where L is a linear 
combination of versions of qS~. Examples are 

L = ¢~r), [rl even 

~)(2hZ+2h'Z)V2--2~(h2+2hn)a/2 -I- (]~ht2t/2 

Therefore, in each of these cases, the constants At, B=, and C=, depend on linear 
combinations of 

d ( r ,  2) = E{q~(~)(X, - X2)}, 

* ( r ,  r', 2, 2') = E { ~ ) ( r ) ( X l  - X 2 ) ¢ ( 2 r , ' ) ( X l  - X2)}, 

~(r ,  r', 2, )~') = E{~b(f)(X1 - X2)q~')(X, - X3)}. 

The class of normal mixture densities that we consider is those having the form 

k 
f ( x )  = ~ weqg¢,(x - #,), (2.2) 

e=l 

where, for each d = 1, . . . ,k ,  #e is an arbitrary d-vector, ae is a d-vector with all 
entries positive, we > 0 and k ~e=l  we = 1. Note that this class is not as general as 

for least squares cross-validation, 

for biased cross-validation and plug-in 

for smoothed cross-validation. 
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that considered by, for example, Wand and Jones (1993), where the components had 
full covariance matrices. However, the current class still provides an interesting set 
of  examples, without complicating the calculations. 

If f is of the form (2.2) then it can be shown that 

and 

k k d 

~/(r, 2) ---- Z 2~2 we, w& H ~(ri'~i'#dli'#&i'°'dli'{Y+2i)' 
f i  =1 /2=1 i=l 

k k d 

~(r ,r ' ,2 ,2 ' )  = ~ ~ we, we: IX fl(ri, r;,)'i,2;,#+g,l'l&i, tTg, i, tr& i) 
El=l &= '  i=1 

k k k d 

Cd(r,r', 2 , 2 ' ) =  ~ ~ ~ WelWe:W+, ]-I 7(ri, r£,2i,2;'Pe,',l&:i'#e,i'ae,"a&i'a6 i)' 
dl=l d2=l d3=l i=1 

where, for scalars r, 2, 2', #,-, a~, i = 1,2, 3, 

e(r, 2, #1, #2, ~l, ~r2) 

= (-1)%<j+++4;,,:(#1 - m)nr (,~2 + ~ + ~)1/2 (,~2 + ~ + 2, , 

, , +2n,- V2)-~-I 2,-r'--12~ -- + fl(r,r , 2 , 2 ,  # 1 , # 2 ,  0"1, 0"2) = I, ) (P(a~+ai+'~:)i/2t~l - -  # 2 )  

r' r--jr'--j' ( : )  (jr) ( ; ) ( j r )  × Z Z Z  r j  r ' -  
t k t 

j=O j'=O k=O k'=O 

. t  # . . i  i ~ .  . t  i × v(j + j' )v(k + t~ bt I"~]-J--k:t--J'% --k t*'nd+J1 ~'2"rk+k .~JJ+J +2k+2k 

×(o~ + ~2)-v+/+~+~')/,H. +_~ f~ (~' - "  ~)i~ } 

{ } 
and 

7(r, r', 2, 2', PI, P2, #3, gl, a2, g3 ) 

Y t ) ( / ) {  } = (2~)-'/2e~(~)~d ~ ~ , v0 + / )  × He-+ ( , ~ 7 ~ 1 / 2  
j=O j'=O 

~3 -- ~-I ~ ~--j--j' {(~2 + O.i)r+j+l(,~t2 @ Gi)r'+j'+l}--l/2. 
× w - /  (xa+~) l /2  j 
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Here Hj denotes the j th normalised Hermite polynomial, given by Hi(t)  = (-1)J~bl 0) 
(t)/dpl(t), v ( j )  = ( j  - 1)(j - 3 ) - . -  1 for j even and positive, v(0) = 1, v( j )  = 0 for 
j odd, 2 = 22'/(22 +/~t2) 1/2, 

(1~2 - -  /~/3) 2 (/ /1 - -  /-/2) 2 

= (,v + 0-~)(,v 2 + 0-~) + 0-~(,v + 0-~) 

+ + + + 0-- 7 

/ , =  

(I/1 - -  ~23) 2 ~1/2 

+ J ' 

u~(~2 + 0-2~)(~,2 + 0-3) + 0-~{m(z ~ + 0-~) + m(~  ~ + 0-~)} 
(~2  ._~ 0-2) (~ t  2 _~_ 0-2) ..}_ 0-12(,~2 + 0-2 ~_ /~t 2 .~_ 0-2) 

3. Numerical Results 

Suppose that the data X1,...,Xn are contained in the 'box' [al, bL] x . . .  × [aa, ba] 
where, without loss of  generality, a~ and b~ are integer multiples of 6i, i = 1 . . . . .  d. In 
practice binned kernel estimators are obtained by binning the data on an 341 × . . .  x Ma 
grid where 

M i  = (bi - a i ) /6 i  -]- 1, i = 1 . . . .  , d .  

We will call Mi the grid size for direction i. While Theorem 1 is in terms of the 
binwidths 6~, it is the grid sizes M~ that have direct relevance to computational costs. 
To see this, let tc.e = L(61~1,... ,6aEa), f i  = - M , , . . .  ,Mi, i = 1,. . .  ,d. Then it is easy 
to show that 

0 6 = n - 2 Z . . . ~ - ' ~ c e  . . . .  ~ : e - l , c ,  • 
d't=l E~=I \ # , = 1  ga=l 

The number of  distinct arguments of L is O ( M I - . . M  a). Moreover, 0a requires 
O(M 2-.-  M 2) operations if computed directly, although considerable savings are pos- 
sible by recognising that many of the c¢ and roe are zero; see, for example, Scott 
(1992, pp.l l8,  121). Noting that the inner summation is a discrete convolution, the 
Fast Fourier Transform can be used to compute 0a in O(M1 log M1.- .  Ma log Ma) 
operations (Wand, 1994). Either way, there is a genuine trade-off: increasing the 
Mils leads to better accuracy, but also increases the computational labour and stor- 
age requirements. Therefore, it is of  particular interest to develop an understanding 
of  the minimum grid sizes required to achieve a certain level of  accuracy. 

While Theorem 1 provides a concise quantification of  the accuracy of 06, it suffers 
from the problem that the mean squared error E{(Oa - 0) 2} is scale dependent and 
therefore does not lend itself to meaningful interpretation. A convenient scale invari- 
ant adjustment is the relative mean squared error (RMSE) given by 

RMSE = E{(06 - O)2}/E{(O - 0)2}, 
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where 0 represents the 'target' of  the estimator 0. Therefore, RMSE is the ratio of 
the error due to binning to the overall estimation error. 

The form of  0 depends on the particular setting. For plug-in bandwidth selection 
we have O's of  the form 

0 = f f (r ) (x) f (x)  dx, [r[ even, 

while for least-squares cross-validation 

{ j  / - . 

where 27(.;h) is a kemel density estimator with bandwidth vector h and d-variate 
kernel K. For smoothed cross-validation 

0 =/[E{27(x;  h)) - f (x ) ]  2 dx, 

the integrated squared bias of  27(.; h). 
For brevity's sake we will confine our numerical results to plug-in bandwidth 

selection with Jr[ -- 4. Functionals with ]r[ ---- 4 are of  particular importance in 
plug-in bandwidth selection since they correspond to the unknown functionals in 
expressions in the asymptotically optimal bandwidth formulae; see, for example, 
Wand and Jones (1994) and Sain et al. (1994). In this case the mean squared error 
of  0 can be shown to be 

- 0 )  2 }  = 

+2n-3(n - 

+4n-3(n - 

+ (n - 1 )d(r ,  h) - nd(r ,  0)} 2 

1){~l(r,r,h,h) - d ( r , h )  2} 

1)(n - 2){Cg(r,r,h,h) - d ( r ,  h)2}. 

For simplicity we will take ai = -3 ,  bi : 3, i = 1,-. .  ,d and M1 . . . .  = Ma = M 
in all of  our examples. In each setting we will be interested in the minimum grid 
size M*(a) required to achieve 100~% accuracy, 0 < ~ < 1, defined by 

M*(a) = smallest M such that the approximate RMSE _< ~. 

The approximate RMSE is simply the RMSE with E{(0~ - 0) 2} replaced by its 
leading term as 6i ~ 0, given b y  Theorem 1. Note that RMSE also depends on 
the bandwidths used by 0 and 0~. We will take hi . . . . .  ha to equal the single 
bandwidth that minimises E{(O - 0)2}. 

Table 1 contains the minimum grid sizes for estimation of  f f (4) (x) f (x )dx  for 
the 15 normal mixture densities of Marron and Wand (1992). These are pictured in 
Fig. 2(a). The results show that a grid size of  about 500 guarantees a very accurate 
approximation for the majority of  situations. It is only those densities with a high 
degree of  'fine structure' that require grid-sizes in the thousands to achieve this l% 
accuracy level. 

In most situations we see that linear binning is more accurate than simple binning. 
However, it is interesting to see that there are cases where the asymptotic (as 6 --~ 0) 
dominance of  linear binning has not taken effect, and simple binning is more accurate. 
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The m i n i m u m  gr id  s izes  r equ i r ed  in each  d i r ec t ion  for  some  b iva r i a t e  se t t ings  are 

g iven  in Tab le  2. D e n s i t y  S is the  s t andard  b iva r i a t e  n o r m a l  dens i ty ,  w h i l e  dens i t i es  

C, E and  F are  as  de f ined  in the  s tudy  b y  W a n d  and  Jones  (1993) .  Fig .  2 ( b )  g ives  

con tou r  p lo t s  o f  these  dens i t ies .  Here  w e  see that  w e  requ i re  abou t  the  s a m e  n u m b e r  

Table 1 
Minimum grid sizes to achieve 1% approximate relative MSE for plug-in bandwidth selection and for 
15 example normal mixture densities (r = 4) 

Sample size 

n =  100 n =  1000 n =  10000 

Density Simple Linear Simple Linear Simple Linear 

1 51 30 75 48 114 76 
2 77 46 111 73 168 117 
3 505 341 673 528 896 828 
4 368 252 490 392 692 632 
5 486 288 708 462 1078 747 
6 73 44 102 71 153 115 
7 100 62 140 98 208 156 
8 108 65 148 103 209 165 
9 117 69 162 110 223 176 

10 363 262 498 416 703 662 
11 1285 1104 2000 1936 2904 3259 
12 690 507 1053 879 1515 1472 
13 1153 958 1810 1687 2687 2881 
14 1086 885 1628 1516 2306 2502 
15 621 478 858 767 1155 1209 

1 2 3 

A A 
4 5 

6 7 8 9 

A 
10 

IAI 
11 12 13 14 15 

Fig. 2. (a) Graphs of the 15 example univariate densities. (b) Contour plots of the 4 example bivariate 
densities. 
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S C E F 

00 
Fig. 2. (Continued) 

Table 2 
Minimum grid sizes to achieve 1% approximate relative MSE for plug-in bandwidth selection and for 
4 example bivariate normal mixture densities 

Sample size 

n = 100 n = 1000 n =  10 000 

Density Simple Linear Simple Linear Simple Linear 

rl = 2, ~ = 2 

S 56 42 75 65 103 104 
C 88 67 113 104 153 167 
E 82 60 103 91 135 144 
F 125 101 175 163 242 263 

rl = O, ~ = 4 

S 55 38 72 60 100 96 
C 85 62 110 96 150 153 
E 77 58 100 90 137 144 
F 73 49 105 78 151 125 

rl = 4, ~ = 0 

S 55 38 72 60 100 96 
C 85 62 110 96 150 153 
E 77 56 97 87 131 140 
F 176 160 218 245 283 388 

of bins in each direction as for the univariate samples, but these values have to be 
squared to obtain the total number of grid points in the bivariate mesh. 

4. Conclusions 

Problems requiring automatic smoothing of large data sets are becoming increas- 
ingly more abundant. It is vital that fast and efficient algorithms for performing the 
required calculations are developed and explored. Binned kernel functional approxi- 
mations are an important component of one solution to this problem and this paper, 
for the first time, provides an analysis of their accuracy. As expected, the level of 
accuracy depends on the problem, but for a wide variety of situations a high level 
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of accuracy is achieved using a relatively low number of  bins in each direction. For 
univariate settings the minimum grid sizes are all reasonable for practice using con- 
temporary computing environments. The bivariate results indicate that some caution 
does need to be taken when using binned approximations. For problems where the 
level of detail is about the same as the example bivariate densities considered in 
Section 3 grid sizes of about 100x 100 will be adequate. More detailed surfaces will 
require much bigger meshes which will sometimes be beyond storage capabilities in 
many of the current computing environments. 

In closing we remark that the binned approximation is one of a few recent ideas 
for speeding up computation of kernel estimators. For other ideas see, for example, 
Loader (1994) and Seifert et al. (1994). It would be interesting to see how these other 
ideas adapt to the multivariate functional estimation problem and if their accuracy 
can be quantified so that practical recommendations for their use can be made, as 
the current paper does for the binned approach. 

Appendix A. Proof of Theorem 1. 

We first treat simple binning. Taylor expansion leads to 

n n d 

i -1  it--1 j - I  

Denote the main part on the right-hand side of (A. 1) by de'. Then it is clear that 

We will decompose E(J /F)  in the mean and the variance terms. Consider V~;, i = 
1,. . . ,  n, j = 1,. . . ,  d, mutually independent random variables uniformly distributed on 
the interval (-½, ½). By applying Lemma 1 (part (a)) below we obtain for the mean, 

= Z 6 j e  - e ( v , , j  - z j) + o 6j 
i=1 iP=I j = l  j = l  

We obtain the expression in Theorem 1 for simple binning after some straightforward 
calculations for Var (~ ' )  and the application of Lemma 1 (part (a)) in a similar way 
as above. 
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For linear binning the arguments are similar to those for simple binning, although 
somewhat more long-winded. Taylor expansion leads to 

n d 

0,~ -- 0 = l n - 2  ~-~ ~ ~--~ L(2eD(xi - Xi, )~} (Sij + Si,j) 
i=1 i t=l  j = l  

where S~j = Rij (1 - Rij) and Rij = R (8~-tX~j) for i = 1, . . . ,n ,  j = 1 . . . .  ,d. 
As before, the squared error is dominated by the second moment of  the main term 

on the right-hand side of  (A.2). 
In this case we must consider Uij, i -- 1 . . . .  , n, j = 1, . . . ,  d, mutually independent 

random variables uniformly distributed on the unit interval, and so, after some cal- 
culations and applications of  Lemma 1 (part (b)) we obtain the desired result for 
linear binning. 

Lemma 1. Let  Z be a d-dimensional random vector with continuous density f .  
D e f i n e  V6i = Q ( ~ i - l Z i )  , u6i = R ( ~ i - l z i )  for  all i = 1 , . . . , d  with the functions Q 
and R defined as Q(z) = z -  (closest integer to z), R(z) = z - [z], where lzJ 
denotes the integer part o f  z. Then 

(a) P ( V a < v , Z < z ) - - +  (½+v i )  P ( Z < _ z )  as6--+O 

1)a and z E ~d, for  all v E (-½, 

(b) P(Ua <_u,Z <z) - -~  ui P ( Z  <_z) as 3 ~ 0  
k i = l  / 

for  all u E (0, 1)a and z E ~a, 

where Z < z means that Zi <_ zi for  all i = l , . . . , d .  

Proof. This lemma is an extension of  Lemma 3 by Hall (1983) to the multidimen- 
sional case. We will only prove part (b) of  the lemma. 

To this aim, it suffices to show that for all u E (0, 1) d and z,z '  E IR a (z < z'), 

P(U~ <-u'z < Z <-z') ---~ ( r I u i )  P ( z  < Z (A.3) 

as fi -+ 0. Let Y = fi- lZ = (6~-1Z1 . . . .  ,•dlZd), y~ = 6-1Z and y~ = 6-1z '. Then 

P(U  < u , z  < z _<z ' )  = - i t , ]  _< < r,. <_ 

= ~ ""  Z P (mi < Yi ~ mi q- Ui Vi = 1 , . . . , d )  + ra, 
Yal <m, <--Y~I Y6d <md'(Y~d 
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where 

d 
Ir61 _ 2 ~ sup R (Yi 

i=1 yiE~ 
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d 

< Yi < Y i +  1) = 2 ~ s u p R ( z i  < Zi <__ zi--[- (~i) ----> 0 
i=1 ziE~ 

as ~ ~ 0. Thus, 

P(U~ < u,z < Z < z ' )  = Z " ° ° E 
y~l <m~ <_y~ Yad <md<--Y'~d 

:(mi+ul)6, :(ma+ua)6a 
X ' ' "  q ( z )  d z  + o(1)  (A.4)  

d ml 61 ,] md6d 

as 6 ~ 0. Since q is uniformly continuous on (z,z') ,  the series on the right in (A.4) 
may be written as 

ui(~i y ~  . . .  ~ q ( m l 6 i , . . . , m a 6 a ) + o ( 1 ) .  
Y61 <ml--<YJl Y6d <md<_Y~d 

For the same reason, this quantity equals 

( f l )  : (ml+  1)dil :(md+l)6d 
u, . . .  . . .  q ( s )  + o ( 1 )  

i=1 Y61 <ml ~Y;I Y6d <md~__Y~d dmibl dmdbd 

(n )S." = ui q(s) ds + o( 1 ). 
\i=1 / 

The result (A.3) follows immediately. 

Appendix B. Derivation of  results in Section 2.2 

The non-trivial part is the derivation of  closed-form expressions for 

: f f ~r)(x-- y)~ai(X-- 7[J1)~)o-2(y -- ~.12) dx dy , ~(F~ ~., ~I, I~2, GI, 0̀ 2 ) 

fl(r, r', 2, 2', Pl, #2, al, 0`2) 

:ii+;"<x " '  -- y)d~2, (X -- y)~ga,(X - - / l l )@aE(Y  -- # 2 ) d x d y  

and 

7(r, r', 2, 2', #1,122, ]~3, 0`1, 0`2, 0"3 ) 
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The expression for ~ follows from the general result 

f dt~(r)(x ].l)(~(r')(X ~lt)dx (--1 ~'r-t(r+r') . - - = ~ q,(~+~,~). 2tp - # ) ,  (A.5) 

which is proved, for example, by Wand and Jones (1993). The expression for ~ can 
be obtained by a change of integration order, application of (A.5) and the result 

f (r~) (r2) ( x  -  1)4)o  ( x  - - m ) d x  

= (. I"r,-,, - -  

~kJ1) (71 2 jl =0 j2=0 \ 0"2 J 

× a lr '  -j ,  afr2-j2 (ffl a2 a3 ) -  1 ~j, +j2 V(jl -4- j2 ) (A .6 )  

, a - 2  / ~--,3 ~2 where  ~ =  [E ~-~i<j{(l.li--~lj)/(ffi(Tj)}2] 1/2 ~ = E~=I i IAi/2.~i=lI7;212` and = 

~=1 a7 2. The proof of (A.6) is given in an unpublished manuscript by B. Aldershof, 
J.S. Marron, B.U. Park and M.P. Wand. It can be accomplished by straightforward, 
albeit long-winded, algebra using the explicit formula for the coefficients of a nor- 
malised Hermite polynomial. The result for fl can be derived using the same type 
of argument that is required to derive (A.6) together with the result 

t2 where p* = (#2# + o.:p,)/(o.2 + o- )(Wand and Jones, 1993). 
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