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Variational Bayesian Inference for Parametric and
Nonparametric Regression With Missing Data

C. FAES, J. T. ORMEROD, and M. P. WAND

Bayesian hierarchical models are attractive structures for conducting regression analyses when the data are subject to missingness. However,
the requisite probability calculus is challenging and Monte Carlo methods typically are employed. We develop an alternative approach based
on deterministic variational Bayes approximations. Both parametric and nonparametric regression are considered. Attention is restricted to
the more challenging case of missing predictor data. We demonstrate that variational Bayes can achieve good accuracy, but with considerably
less computational overhead. The main ramification is fast approximate Bayesian inference in parametric and nonparametric regression
models with missing data. Supplemental materials accompany the online version of this article.
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1. INTRODUCTION

Bayesian inference for parametric regression has a long his-
tory (e.g., Box and Tiao 1973; Gelman et al. 2004). Mixed
model representations of smoothing splines and penalized
splines afford Bayesian inference for nonparametric regression
(e.g., Ruppert, Wand, and Carroll 2003). Whilst this notion goes
back at least to Wahba (1978), recent developments in Bayesian
inference methodology, especially Markov chain Monte Carlo
(MCMC) algorithms and software, has led to Bayesian ap-
proaches to nonparametric regression becoming routine. See,
for example, Crainiceanu, Ruppert, and Wand (2005) and Gur-
rin, Scurrah, and Hazelton (2005). There is also a large liter-
ature on Bayesian nonparametric regression using regression
splines with a variable selection approach (e.g., Denison et al.
2002). The present article deals only with penalized spline non-
parametric regression, where hierarchical Bayesian models for
nonparametric regression are relatively simple.

When the data are susceptible to missingness a Bayesian ap-
proach allows relatively straightforward incorporation of stan-
dard missing data models (e.g., Little and Rubin 2004; Daniels
and Hogan 2008), resulting in a larger hierarchical Bayesian
model. Inference via MCMC is simple in principle, but can be
costly in processing time. For example, on the third author’s
laptop computer (Mac OS X; 2.33 GHz processor, 3 GBytes
of random access memory), obtaining 10,000 MCMC samples
for a 25-knot penalized spline model, and sample size of 500,
takes about 2.6 minutes via the R language (R Development
Core Team 2010) package BRugs (Ligges et al. 2010). If 30%
of the predictor data are reset to be missing completely at ran-
dom and the appropriate missing data adjustment is made to
the model then 10,000 MCMC draws takes about 7.3 minutes;
representing an approximate three-fold increase. The situation
worsens for more complicated nonparametric and semiparamet-
ric regression models. MCMC-based inference, via BRugs, for
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the missing data/bivariate smoothing example in section 7 of
Wand (2009) requires about a week on the aforementioned lap-
top.

This article is concerned with fast Bayesian parametric and
nonparametric regression analysis in situations where some of
the data are missing. Speed is achieved by using variational ap-
proximate Bayesian inference, often shortened to variational
Bayes. This is a deterministic approach that yields approximate
inference, rather than ‘exact’ inference produced by an MCMC
approach. However, as we shall see, the approximations can be
very good. An accuracy assessment, described in Section 3.4,
showed that variational Bayes achieves good to excellent ac-
curacy for the main model parameters even with missingness
levels as high as 40%.

Variational Bayes is now part of mainstream computer sci-
ence methodology (e.g., Bishop 2006) and are used in prob-
lems such as speech recognition, document retrieval (e.g., Jor-
dan 2004) and functional magnetic resonance imaging (e.g.,
Flandin and Penny 2007). Recently, they have seen use in statis-
tical problems such as cluster analysis for gene-expression data
(Teschendorff et al. 2005) and finite mixture models (McGrory
and Titterington 2007). Ormerod and Wand (2010) contains an
exposition on variational Bayes from a statistical perspective.
A pertinent feature is their heavy algebraic nature. Even rel-
atively simple models require significant notation and algebra
for description of variational Bayes.

To the best of our knowledge, the present article is the first to
develop and investigate variational Bayes for regression analy-
sis with missing data. In principle, variational Bayes methods
can be used in essentially all missing data regression contexts:
for example, generalized linear models, mixed models, gen-
eralized additive models, geostatistical models and their var-
ious combinations. It is prudent, however, to start with sim-
pler regression models where the core tenets can be elucidated
without excessive notation and algebra. Hence, the present arti-
cle treats the simplest parametric and nonparametric regression
models: single predictor with homoscedastic Gaussian errors.
The full array of missing data scenarios: missing completely
at random (MCAR), missing at random (MAR) and missing
not at random (MNAR) is treated. For parametric regression
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with probit missing data mechanisms, we show that variational
Bayes is purely algebraic, without the need for quadrature or
Monte Carlo-based approximate integration. The nonparamet-
ric regression extension enjoys many of the assets of parametric
regression, but requires some univariate quadrature. Compar-
isons with MCMC show quite good accuracy, but with compu-
tation in the order of seconds rather than minutes. The upshot
is fast approximate Bayesian inference in parametric and non-
parametric regression models with missing data.

Section 2 summarizes the variational Bayes approach. Infer-
ence in the simple linear regression model with missing data is
the focus of Section 3. In Section 4 we describe extension to
nonparametric regression. Some closing discussion is given in
Section 5. An Appendix summarizes notation used throughout
this article. Detailed derivations are given in the online supple-
mental material.

2. ELEMENTS OF VARIATIONAL BAYES

Variational Bayes methods are a family of approximate infer-
ence techniques based on the notions of minimum Kullback–
Leibler divergence and product assumptions on the posterior
densities of the model parameters. They are known as mean
field approximations in the statistical physics literature (e.g.,
Parisi 1988). Detailed expositions on variational Bayes may be
found in Bishop (2006, sections 10.1–10.4) and Ormerod and
Wand (2010). The elements of variational Bayes are described
here.

Consider a generic Bayesian model with parameter vector
θ ∈ � and observed data vector D. Bayesian inference is based
on the posterior density function

p(θ |D) = p(D, θ)

p(D)
.

We will suppose that D and θ are continuous random vectors,
which conforms with the models in Sections 3 and 4. Let q be an
arbitrary density function over �. Then the marginal likelihood
p(D) satisfies p(D) ≥ p(D;q) where

p(D;q) ≡ exp
∫

�

q(θ) log

{
p(D, θ)

q(θ)

}
dθ .

The gap between log{p(D)} and log{p(D;q)} is known as the
Kullback–Leibler divergence and is minimized by

qexact(θ) = p(θ |D),

the exact posterior density function. However, for most models
of practical interest, qexact(θ) is intractable and restrictions need
to be placed on q to achieve tractability. Variational Bayes relies
on product density restrictions:

q(θ) =
M∏

i=1

qi(θ i) for some partition {θ1, . . . , θM} of θ . (1)

This restriction is usually governed by tractability considera-
tions. The derivations in Supplement C of the supplemental ma-
terials demonstrate the tractability advantages of product forms
for the types of models considered in Section 3. As we explain
in Section 3.2, the notion of d-separation can be used to guide
the choice of the partition. A cost of the tractability afforded
by (1) is that it imposes posterior independence between the

partition elements θ1, . . . , θM . Depending on the amounts of
actual posterior dependence, the accuracy of variational Bayes
can range from excellent to poor. For example, in linear regres-
sion models with noninformative independent priors, regression
coefficients and the error variance tend to have negligible poste-
rior dependence and the assumption of posterior independence
has a mild effect. In Section 3.3 we describe a situation where
the posterior dependence is nonnegligible and the variational
Bayes approximation suffers.

Under restriction (1), the optimal densities (with respect to
minimum Kullback–Leibler divergence) can be shown to sat-
isfy

q∗
i (θ i) ∝ exp

{
E−θ i log p(D, θ)

}
, 1 ≤ i ≤ M, (2)

where E−θ i denotes expectation with respect to the density∏
j�=i qj(θ j). Equations (2) are a set of consistency conditions

for the maximum of p(D;q) subject to constraint (1). Each up-
date uniquely maximizes p(D,q) with respect to the parameters
of q∗

i (θ i). Convergence of such a scheme, known the method
of alternating variables or the coordinate ascent method, is
guaranteed under mild assumptions (Luenberger and Ye 2008,
p. 253). Convergence can be assessed by monitoring relative
increases in log{p(D;q)}. In all of the examples in this article,
convergence was achieved within a few hundred iterations with
a stringent tolerance level.

An equivalent form for the solutions is

q∗
i (θ i) ∝ exp

{
E−θ i log p(θ i|rest)

}
, 1 ≤ i ≤ M, (3)

where rest ≡ {D, θ1, . . . , θ i−1, θ i+1, . . . , θM} is the set contain-
ing the rest of the random vectors in the model, apart from θ i.
The distributions θ i|rest, 1 ≤ i ≤ M, are known as the full con-
ditionals in the MCMC literature. Gibbs sampling (e.g., Robert
and Casella 2004) involves successive draws from these full
conditionals. We prefer (3) to (2), since it lends itself to consid-
erable simplification via graph theoretic results that we describe
next.

2.1 Directed Acyclic Graphs and Markov Blanket Theory

The missing data regression models of Sections 3 and 4 are
hierarchical Bayesian models, and hence can be represented as
probabilistic directed acyclic graphs (DAGs). DAGs provide a
useful ‘road map’ of the model’s structure, and aid the alge-
bra required for variational Bayes. Random variables or vectors
correspond to nodes while directed edges (i.e., arrows) convey
conditional dependence. The observed data components of the
DAG are sometimes called evidence nodes, whilst the model
parameters correspond to hidden nodes. Bishop (2006, chap-
ter 8) and Wasserman (2004, chapter 17) provide very good
summaries of DAGs and their probabilistic properties. Figures 1
and 4 (in Sections 3.2 and 4, respectively) contain DAGs for
models considered in the present article.

The formulation of variational Bayes algorithms greatly ben-
efit from a DAG-related known concept known as Markov blan-
ket theory. First we define the Markov blanket of a node on a
DAG:

Definition. The Markov blanket of a node on a DAG is the
set of children, parents, and coparents of that node. Two nodes
are coparents if they have at least one child node in common.
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Markov blankets are important in the formulation of varia-
tional Bayes algorithms because of:

Theorem (Pearl 1988). For each node on a probabilistic
DAG, the conditional distribution of the node given the rest of
the nodes is the same as the conditional distribution of the node
given its Markov blanket.

For our generic Bayesian example, this means that

p(θ i|rest) = p(θ i|Markov blanket of θ i).

It immediately follows that

q∗
i (θ i) ∝ exp

{
E−θ i log p(θ i|Markov blanket of θ i)

}
,

1 ≤ i ≤ M. (4)

For large DAGs, such as those in Figure 4, (4) yields consider-
able algebraic economy. In particular, it shows that the q∗

i (θ i)

require only local calculations on the model’s DAG.

3. SIMPLE LINEAR REGRESSION WITH MISSING
PREDICTOR DATA

In this section we confine attention to the simple linear re-
gression model with homoscedastic Gaussian errors. For com-
plete data on the predictor/response pairs (xi, yi), 1 ≤ i ≤ n, this
model is

yi = β0 + β1xi + εi, εi
ind.∼ N(0, σ 2

ε ).

We couch this in a Bayesian framework by taking β0, β1
ind.∼

N(0, σ 2
β ) and σ 2

ε ∼ IG(Aε,Bε) for hyperparameters σ 2
β ,Aε,

Bε > 0. Use of these conjugate priors simplifies the variational
Bayes algebra. Other priors, such as those described by Gelman
(2006), may be used. However, they result in more complicated
variational Bayes algorithms.

Now suppose that the predictors are susceptible to missing-
ness. Bayesian inference then requires a probabilistic model for
the xi’s. We will suppose that

xi
ind.∼ N(μx, σ

2
x ) (5)

and take μx ∼ N(0, σ 2
μx

) and σ 2
x ∼ IG(Ax,Bx) for hyperparame-

ters σ 2
x ,Ax,Bx > 0. If normality of the xi’s cannot be reasonably

assumed then (5) should be replaced by an appropriate para-
metric model. The variational Bayes algorithm will need to be
changed accordingly. For concreteness and simplicity we will
assume that (5) is reasonable for the remainder of the article.

For 1 ≤ i ≤ n let Ri be a binary random variable such that

Ri =
{

1, if xi is observed,

0, if xi is missing.

Bayesian inference for the regression model parameters differs
according to the dependence of the distribution of Ri on the
observed data (e.g., Gelman et al. 2004, section 17.2). With �

denoting the standard normal cumulative distribution function,
we will consider the following three missingness mechanisms:

1. P(Ri = 1) = p for some constant 0 < p < 1. In this case
the missing-data mechanism is independent of the data,
and the xi’s are said to be missing completely at random
(MCAR). Under MCAR, the observed data are a simple
random sample of the complete data.

2. P(Ri = 1|φ0, φ1, yi) = �(φ0 + φ1yi) for parameters

φ0, φ1
ind.∼ N(0, σ 2

φ) and hyperparameter σ 2
φ > 0. In this

case, the missing-data mechanism depends on the ob-
served yi’s but not on the missing xi’s. Inference for the
regression parameters β0, β1, and σ 2

ε is unaffected by the
φ0 and φ1 or the conditional distribution Ri|φ0, φ1, yi. The
xi’s are said to be missing at random (MAR). In addition,
the independence of the priors for (φ0, φ1) from those of
the regression parameters means that the missingness is
ignorable (Little and Rubin 2004).

3. P(Ri = 1|φ0, φ1) = �(φ0 + φ1xi) for parameters φ0,

φ1
ind.∼ N(0, σ 2

φ) and hyperparameter σ 2
φ > 0. In this case,

the missing-data mechanism depends on the unobserved
xi’s and inference for the regression parameters β0, β1,
and σ 2

ε depends on the φ0 and φ1 and Ri|φ0, φ1, xi. The
xi’s are said to be missing not at random (MNAR).

Define the matrices

X =
⎡
⎢⎣

1 x1
...

...

1 xn

⎤
⎥⎦ , Y =

⎡
⎢⎣

1 y1
...

...

1 yn

⎤
⎥⎦ , β =

[
β0

β1

]
,

and

φ =
[

φ0

φ1

]
.

Then the three missing data models can be summarized as fol-
lows:

yi|xi,β, σ 2
ε

ind.∼ N((Xβ)i, σ
2
ε ), xi|μx, σ

2
x

ind.∼ N(μx, σ
2
x ),

β ∼ N(0, σ 2
β I), μx ∼ N

(
0, σ 2

μx

)
,

σ 2
ε ∼ IG(Aε,Bε), σ 2

x ∼ IG(Ax,Bx), (6)

Ri|φ, xi, yi
ind.∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Bernoulli(p),

model with xi MCAR,

Bernoulli
[
�{(Yφ)i}

]
,

model with xi MAR,

Bernoulli
[
�{(Xφ)i}

]
,

model with xi MNAR,

φ ∼ N(0, σ 2
φ I).

Of course, for the model with xi MCAR, the assumption

Ri|φ ind.∼ Bernoulli(p) simplifies to Ri
ind.∼ Bernoulli(p) and φ is

superfluous.
The following additional notation is useful in the upcoming

sections. Let nobs denote the number of observed xi’s and nmis

be the number of missing xi’s. Let xobs be the nobs × 1 vector
containing the observed xi’s and xmis be nmis ×1 vector contain-
ing the missing xi’s. We reorder the data so that the observed
data is first. Hence, the full vector of predictors is

x ≡
[

xobs

xmis

]
.

Finally, let yxmis,i be the value of the response variable corre-
sponding to xmis,i, the ith entry of xmis.
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3.1 Incorporation of Auxiliary Variables

It is now well established that Bayesian models with probit
regression components benefit from the introduction of aux-
iliary variables. This was demonstrated by Albert and Chib
(1993) for inference via Gibbs sampling and by Girolami and
Rogers (2006) for variational Bayes inference. Appropriate
auxiliary variables are

ai|φ ∼ N((Yφ)i,1) for the model with xi MAR, and
(7)

ai|φ ∼ N((Xφ)i,1) for the model with xi MNAR.

A consequence of (7) is

P(Ri = r|ai) = I(ai ≥ 0)rI(ai < 0)1−r, r = 0,1.

As will become clear in Section 3.3, variational Bayes becomes
completely algebraic (i.e., without the need for numerical inte-
gration or Monte Carlo methods) if auxiliary variables are in-
corporated into the model.

3.2 Directed Acyclic Graphs Representations

Figure 1 provides DAG summaries of the three missing data
models, after the incorporation of the auxiliary variables a =
(a1, . . . ,an) given by (7). To enhance clarity, the hyperparame-
ters are suppressed in the DAGs.

The DAGs in Figure 1 show the interplay between the re-
gression parameters and missing data mechanism parameters.
For the MCAR model the observed data indicator vector R =
(R1, . . . ,Rn) is completely separate from the rest of the DAG.
Delineation between the MAR and MNAR is more subtle, but
can be gleaned from the directed edges in the respective DAGs
and graph theoretical results. The Markov blanket theorem of
Section 2.1 provides one way to distinguish MAR from MNAR.
Table 1 lists the Markov blankets for each of the hidden nodes
(i.e., model parameters or missing predictors) under the two
missing-data models. Under MAR, there is a separation be-
tween the two hidden node sets

{β, σ 2
ε ,xmis,μx, σ

2
x } and {a,φ}

in that their Markov blankets have no overlap. It follows imme-
diately that Bayesian inference for the regression parameters
based on Gibbs sampling or variational Bayes is not impacted
by the missing-data mechanism. In the MNAR case, this sepa-
ration does not occur since, for example, the Markov blanket of
xmis includes {a,φ}.

Figure 1. DAGs for the three missing data models for simple lin-
ear regression, given by (6). Shaded nodes correspond to the observed
data.

Table 1. The Markov blankets for each node in the second and
third DAGs of Figure 1

Node Markov blanket under MAR Markov blanket under MNAR

β {y, σ 2
ε ,xmis,xobs} {y, σ 2

ε ,xmis,xobs}
σ 2
ε {y,β,xmis,xobs} {y,β,xmis,xobs}

xmis {y,β, σ 2
ε ,xobs,μx, σ

2
x } {y,β, σ 2

ε ,xobs,μx, σ
2
x ,a,φ}

μx {xmis,xobs, σ
2
x } {xmis,xobs, σ

2
x }

σ 2
x {xmis,xobs,μx} {xmis,xobs,μx}

a {y,R,φ} {xmis,xobs,R,φ}
φ {a,y} {xmis,xobs,a}

One can also use d-separation theory (Pearl 1988; see also
section 8.2 of Bishop 2006) to establish that, under MAR,

{β, σ 2
ε ,xmis,μx, σ

2
x } ⊥⊥ {a,φ}|{y,xobs,R},

where u ⊥⊥ v|w denotes conditional independence of u and v
given w. The key to this result is the fact that all paths from
the nodes in {β, σ 2

ε ,xmis,μx, σ
2
x } to those in {a,φ} must pass

through the y node. In Figure 1 we see that the y node has ‘head-
to-tail’ pairs of edges that block the path between a and the
regression parameters.

3.3 Approximate Inference via Variational Bayes

We will now provide details on approximate inference for
the simple linear regression missing data models with predic-
tors MNAR. Details for the simpler MCAR and MAR cases are
given in Supplement A of the supplemental materials.

As we shall see, variational Bayes boils down to iterative
schemes for the parameters of the optimal q densities. The cur-
rent subsection does little more than listing the algorithm for
variational Bayes inference. Section 3.4 addresses accuracy of
this algorithm and its MCAR analogue.

For a generic random variable v and density function q(v) let

μq(v) ≡ Eq(v) and σ 2
q(v) ≡ Varq(v).

Also, in the special case that q(v) is an Inverse Gamma density
function we let(

Aq(v),Bq(v)
)≡ shape and rate parameters of q(v).

In other words, v ∼ IG(Aq(v),Bq(v)). Note the relationship
μq(1/v) = Aq(v)/Bq(v). For a generic random vector v and den-
sity function q(v) let μq(v) ≡ Eq(v) and

�q(v) ≡ Covq(v) = covariance matrix of v under density q(v).

To avoid notational clutter we will omit the asterisk when ap-
plying these definitions to the optimal q∗ densities.

The updates for Eq(xmis)(X) and Eq(xmis)(X
TX) are the same

for each of Algorithms 1, S.1, and S.2 (the latter two algorithms
are in the online supplemental materials) so we list them here:

Eq(xmis)(X) ←
[

1 xobs

1 μq(xmis)

]
,

Eq(xmis)(X
TX) ←

[
n

1Txobs + 1Tμq(xmis)

(8)

1Txobs + 1Tμq(xmis)

‖xobs‖2 + ‖μq(xmis)
‖2 + nmisσ

2
q(xmis)

]
.
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Algorithm 1 Iterative scheme for obtaining the parameters in the optimal densities q∗(β), q∗(σ 2
ε ), q∗(μx), q∗(σ 2

x ), q∗(xmis,i), and
q∗(φ) for the MNAR simple linear regression model.
Initialize: μq(1/σ 2

ε ), μq(1/σ 2
x ) > 0, μq(β)(2 × 1), and �q(β)(2 × 2).

Cycle:

σ 2
q(xmis)

← 1/
[
μq(1/σ 2

x ) + μq(1/σ 2
ε )

{
μ2

q(β1)
+ (�q(β)

)
22

}+ μ2
q(φ1)

+ (�q(φ)

)
22

]
for i = 1, . . . ,nmis:

μq(xmis,i) ← σ 2
q(xmis)

[
μq(1/σ 2

x )μq(μx) + μq(1/σ 2
ε )

{
yxmis,iμq(β1) − (�q(β)

)
12 − μq(β0)μq(β1)

}
+ μq(axmis,i )

μq(φ1) − (�q(φ)

)
12 − μq(φ0)μq(φ1)

]
,

update Eq(xmis)(X) and Eq(xmis)(X
TX) using (8)

�q(β) ←
{
μq(1/σ 2

ε )Eq(xmis)(X
TX) + 1

σ 2
β

I
}−1

; μq(β) ← �q(β)μq(1/σ 2
ε )Eq(xmis)(X)Ty

σ 2
q(μx)

← 1/
(
nμq(1/σ 2

x ) + 1/σ 2
μx

); μq(μx) ← σ 2
q(μx)

μq(1/σ 2
x )

(
1Txobs + 1Tμq(xmis)

)
Bq(σ 2

ε ) ← Bε + 1

2
‖y‖2 − yTEq(xmis)(X)μq(β) + 1

2
tr
{
Eq(xmis)(X

TX)
(
�q(β) + μq(β)μ

T
q(β)

)}
Bq(σ 2

x ) ← Bx + 1

2

(∥∥xobs − μq(μx)1
∥∥2 + ∥∥μq(xmis)

− μq(μx)1
∥∥2 + nσ 2

q(μx)
+ nmisσ

2
q(xmis)

)
μq(1/σ 2

ε ) ←
(

Aε + 1

2
n

)/
Bq(σ 2

ε ); μq(1/σ 2
x ) ←
(

Ax + 1

2
n

)/
Bq(σ 2

x )

�q(φ) ←
{

Eq(xmis)(X
TX) + 1

σ 2
φ

I
}−1

; μq(φ) ← �q(φ)Eq(xmis)(X)Tμq(a)

μq(a) ← Eq(xmis)(X)μq(φ) + (2R − 1) 
 (2π)−1/2 exp{−1/2(Eq(xmis)(X)μq(φ))
2}

�((2R − 1) 
 (Eq(xmis)(X)μq(φ)))

until the increase in p(y,xobs,R;q) is negligible.

For the simple linear regression model, with predictors
MNAR, we impose the product density restriction

q(β, σ 2
ε ,xmis,μx, σ

2
x ,φ,a)= q(β,μx,φ)q(σ 2

ε , σ 2
x )q(xmis)q(a).

The variational Bayes approximate posterior density functions
for the model parameters have the forms:

q∗(β) = Bivariate Normal density,

q∗(σ 2
ε ) = Inverse Gamma density,

q∗(xmis) = product of nmis univariate Normal densities,

q∗(μx) = univariate normal density,

q∗(σ 2
x ) = Inverse Gamma density,

q∗(φ) = Bivariate Normal density,

and

q∗(a) = product of n Truncated Normal densities.

Supplement C, in the supplemental materials, provides full ex-
pressions for these density functions, as well as their deriva-
tion. The parameters for these approximate posterior density
functions may be obtained via Algorithm 1. Note that, for
1 ≤ i ≤ nmis, axmis,i denotes the entry of a corresponding to
xmis,i.

The lower bound on the marginal log-likelihood, log{p(y,

xobs,R;q)}, has the explicit expression

log p(y,xobs,R;q)

= 1

2
(nmis + 5) −

(
n − 1

2
nmis

)
log(2π) + nmis

2
log
(
σ 2

q(xmis)

)

+ 1

2
log

∣∣∣∣ 1

σ 2
β

�q(β)

∣∣∣∣− 1

2σ 2
β

{∥∥μq(β)

∥∥2 + tr
(
�q(β)

)}

+ 1

2
log
(
σ 2

q(μx)
/σ 2

μx

)− 1

2

(
μ2

q(μx)
+ σ 2

q(μx)

)
/σ 2

μx

+ Aε log(Bε) − Aq(σ 2
ε ) log
(
Bq(σ 2

ε )

)
+ log	

(
Aq(σ 2

ε )

)− log	(Aε)

+ Ax log(Bx) − Aq(σ 2
x ) log
(
Bq(σ 2

x )

)
+ log	

(
Aq(σ 2

x )

)− log	(Ax)

+ 1

2

∥∥Eq(xmis)(X)μq(φ)

∥∥2
− 1

2
tr
{
Eq(xmis)(X

TX)
(
μq(φ)μ

T
q(φ) + �q(φ)

)}
+ RT log

{
�
(
Eq(xmis)(X)μq(φ)

)}
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+ (1 − R)T log
{
1 − �
(
Eq(xmis)(X)μq(φ)

)}
+ 1

2
log

∣∣∣∣ 1

σ 2
φ

�q(φ)

∣∣∣∣− 1

2σ 2
φ

{∥∥μq(φ)

∥∥2 + tr
(
�q(φ)

)}
.

Note that, within each iteration of Algorithm 1, this expression
applies only after each of the parameter updates has been made.

3.4 Assessment of Accuracy

We now turn attention to the issue of accuracy of variational
Bayes inference for models (6). Algorithms 1, S.1, and S.2 pro-
vide speedy approximate inference for the model parameters,
but come with no guarantees of achieving an acceptable level
of accuracy. Here we provide an accuracy assessment of Algo-
rithm 1 using simulated data. An accuracy assessment of Algo-
rithm S.1 is given in Supplement A of the supplemental materi-
als.

Let θ denote a generic univariate parameter. There are nu-
merous means by which the accuracy of a variational Bayes
approximate density q∗(θ) can be measured with respect to the
exact posterior density p(θ |y). Kullback–Leibler distance is an
obvious choice but can be dominated by the tail behavior of the
densities involved (e.g., Hall 1987). We recommend working
with the L1 loss, or integrated absolute error (IAE) of q∗, given
by

IAE(q∗) =
∫ ∞

−∞
|q∗(θ) − p(θ |y)|dθ.

This error measure has the attractions of being (a) invariant to
monotone transformations on the parameter θ and (b) a scale-
independent number between 0 and 2 (e.g., Devroye and Györfi
1985). The second of these motivates the accuracy measure

accuracy(q∗) = 1 −
{

IAE(q∗)
/

sup
q a density

IAE(q)
}

= 1 − 1

2
IAE(q∗). (9)

Note that 0 ≤ accuracy(q∗) ≤ 1 and will be expressed as a per-
centage in the examples to follow.

Computation of accuracy(q∗) is a little challenging, since it
depends on the posterior p(θ |y) that we are trying to avoid by
using approximate inference methods. However, MCMC with
sufficiently large samples can be used to approximate p(θ |y) ar-
bitrarily well. The accuracy assessments that we present in this
section are based on MCMC samples obtained using BRugs
(Ligges et al. 2010) with a burn-in of size 10,000. A thinning
factor of 5 was applied to postburn-in samples of size 50,000.
This resulted in MCMC samples of size 10,000 for density
estimation. Density estimates were obtained using the binned
kernel density estimate bkde() function in the R package
KernSmooth (Wand and Ripley 2009). The bandwidth was
chosen using a direct plug-in rule, corresponding to the default
version of dpik(). These density estimates act as a proxy for
the exact posterior densities. For sample sizes as large as 10,000
and well-behaved posteriors the quality of these proxies should
be quite good. Nevertheless, it must be noted that they are sub-
ject to errors inherent in density estimation and bandwidth se-
lection.

In our simulation for the MNAR model, the missingness is
controlled by the two pairs of probit coefficients:

(φ0, φ1) = (2.95,−2.95) and
(10)

(φ0, φ1) = (0.85,−1.05).

In each case, the probability of missingness increases as a func-
tion of the covariate. For the first pair the missingness proba-
bility ranges from 0.0 to 0.5 with an average of 0.25. For the
second pair the range is 0.2 to 0.58 with an average of 0.39,
representing more severe missingness. The hyperparameter is
set at σ 2

φ = 108 to give a noninformative prior distribution for
(φ0, φ1).

Figure 2 summarizes the accuracy results based on 100
simulated datasets while Figure 3 plots the variational Bayes
and MCMC approximate posteriors for a typical realization
from the simulation study with σε = 0.2 and (φ0, φ1) =
(2.95,−2.95).

The parameters corresponding to the regression part of the
model (β0, β1, σ

2
ε ) show high accuracy, with almost all accu-

racy levels above 80%. The accuracy drops considerably when
the amount of missing data is large or when the data are noisy.
This might be expected since there is a decrease in the amount
of information about the parameters. The accuracy of the miss-
ing covariates is high in all situations, even when the missing
data percentage is very large.

The variational Bayes approximations generally are poor for
the missingness mechanism parameters φ0 and φ1. Whilst vari-
ational Bayes tends to do well in terms of location, it gives pos-
terior density functions with a deflated amount of spread. This
is due to strong posterior correlation between φ and a in pro-
bit auxiliary variable models, as is reported in section 2.1 of
Holmes and Held (2006), for example. This deficiency of vari-
ational Bayes is restricted to the lower nodes of the right-most
DAG in Figure 1 and can only be remedied through a more elab-
orate variational approximation—for example, one that allows
posterior dependence between φ and a. Such elaboration will
bring computational costs, which need to be traded off against
the importance of making inference about the MNAR parame-
ters. In many applied contexts, these parameters are not of pri-
mary interest.

3.5 Credible Interval Coverage

Another important type of accuracy assessment involves
comparison between the advertised coverage of variational
Bayes approximate credible intervals and the actual coverage.
We carried out this assessment by simulating 10,000 repli-
cations from the MCAR and MNAR simple linear regres-
sion models with true parameters as given by (10), and (S.3)
and (S.4) in Supplement A. Table 2 shows the percentages of
true parameter coverage for the approximate 95% credible in-
tervals formed from the variational Bayes posterior densities
with 0.025 probability mass in each tail. The margin of error
(i.e., twice the asymptotic standard error) is less than 1% for all
entries in Table 2.

For the MCAR models the coverage is generally very good
and does not fall below 86% for all model parameters and miss-
ing xi’s. For MNAR models, this claim is true for the regres-
sion coefficients and error variance. There is some degradation
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Figure 2. Summary of simulation for simple linear regression with predictor MNAR. For each setting, the accuracy values are summarized
as a boxplot.

for μx for high noise and missingness. The coverage for the
missing data mechanism parameters, φ0 and φ1, is generally
quite poor. Interestingly, the coverage is better in the high miss-
ingness case. We do not have an explanation for this counter-
intuitive result, except to note that the principles that drive
variational Bayes accuracy do not necessarily match those that
drive statistical accuracy.

3.6 Prediction Interval Coverage

Prediction intervals for the response are often of interest in
missing data problems. For each of the missing data regres-
sion models (6) the Bayesian prediction intervals depend on
p(β, σ 2

ε |y), the joint posterior of the regression coefficients and
error variance. In the case of noninformative independent priors
there is negligible posterior dependence between β and σ 2

ε . As
indicated by Figure 2 and Figure S.1 in Supplement A, the vari-
ational Bayes approximation to p(β, σ 2

ε |y) is very good and the
variational Bayes prediction intervals have good coverage prop-
erties, at least for the simulation settings in the current section.
We have also visually compared the variational Bayes predic-
tion intervals with their MCMC counterparts for several replica-
tions of each simulation setting and found excellent agreement
between the two.

3.7 Speed Comparisons

While running the simulation studies described in Section 3.4
we kept track of the time taken for each model to be fitted. The
results are summarized in Table 3. The computer involved used
the Mac OS X operating system with a 2.33 GHz processor and
3 GBytes of random access memory.

As with most speed comparisons, some caveats need to be
taken into account. First, the MCMC and variational Bayes an-
swers were computed using different programming languages.

The MCMC model fits were obtained using the BUGS infer-
ence engine (Lunn et al. 2000) with interfacing via the pack-
age BRugs (Ligges et al. 2010) in the R computing environ-
ment (R Development Core Team 2010). The variational Bayes
model fits were implemented using R. Second, no effort was
made to tailor the MCMC scheme to the models at hand. Third,
as detailed in Section 3.4, both methods had arbitrarily cho-
sen stopping criteria. Despite these caveats, Table 3 gives an
impression of the relative computing times involved if an ‘off-
the-shelf’ MCMC implementation is used.

Caveats aside, the results indicate that variational Bayes is at
least 60 times faster than MCMC across all models. Hence, a
model that takes minutes to run in MCMC takes only seconds
with a variational Bayes approach.

4. NONPARAMETRIC REGRESSION WITH MISSING
PREDICTOR DATA

We now describe extension to nonparametric regression with
missing predictor data. The essence of this extension is replace-
ment of the linear mean function

β0 + β1x by f (x),

where f is a smooth flexible function. There are numerous
approaches to modeling and estimating f . The one which is
most conducive to inference via variational Bayes is penal-
ized splines with mixed model representation. This involves the
model

f (x) = β0 + β1x +
K∑

k=1

ukzk(x), uk
ind.∼ N(0, σ 2

u ), (11)

where the {zk(·) : 1 ≤ k ≤ K} are an appropriate set of spline ba-
sis functions. Several options exist for the zk. Our preference
is suitably transformed O’Sullivan penalized splines (Wand
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Figure 3. Variational Bayes approximate posteriors for the regression model parameters and three missing xi’s for simple linear regression
with predictors MNAR. The regression parameters are (β0, β1, σε) = (1,1,0.2) and the probability of xi being observed is �(φ0 + φ1xi) where
(φ0, φ1) = (2.95,−2.95). The vertical lines correspond to the true values of the parameters from which the data were simulated (described in the
text). The MCMC posteriors are based on samples of size 10,000 and kernel density estimation. The accuracy values correspond to the definition
given at (9).

and Ormerod 2008) since this leads to approximate smoothing
splines, which have good boundary and extrapolation proper-
ties.

From the graphical model standpoint, moving from paramet-
ric regression to nonparametric regression using mixed model-
based penalized splines simply involves enlarging the DAGs
from parametric regression. Figure 4 shows the nonparametric
regression DAGs for the three missing data mechanisms treated
in Section 3. Comparison with Figure 1 shows the only differ-
ence is the addition of the σ 2

u node, and replacement of β by
(β,u). Note that (β,u) could be broken up into separate nodes,
but the update expressions are simpler if these two random vec-
tors are kept together.

The variational Bayes algorithms for the DAGs in Figure 4
simply involve modification of Algorithms 1, S.1, and S.2 to ac-

commodate the additional nodes and edges. However, the spline
basis functions give rise to nonstandard forms and numerical
integration is required. We will give a detailed account of this
extension in the MNAR case only. The MCAR and MAR cases
require similar arguments, but are simpler.

Define the 1 × (K + 2) vector

Cx ≡ (1, x, z1(x), . . . , zK(x))

corresponding to evaluation of penalized spline basis functions
at an arbitrary location x ∈ R. Then the optimal densities for the
xmis,i, 1 ≤ i ≤ nmis, take the form

q∗(xmis,i) ∝ exp
(− 1

2 Cxmis,i�mis,iCT
xmis,i

)
, (12)

where the (K + 2) × (K + 2) matrices �mis,i, 1 ≤ i ≤ nmis, cor-
respond to each entry of xmis = (xmis,1, . . . , xmis,nmis) but does
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Table 2. Percentage coverage of true parameter values and the first three missing xi values by approximate 95% credible intervals based on
variational Bayes approximate posterior density functions. Low missingness for the MCAR model corresponds to p = 0.8 and high missingness
to p = 0.6. Low missingness for the MNAR model corresponds to (φ0, φ1) = (2.95,−2.95) and high missingness to (φ0, φ1) = (0.85,−1.05).

The percentages are based on 10,000 replications, which guarantees a margin of error (twice the asymptotic standard error) less than 1%

mis’ness MCAR low miss. MCAR high miss. MNAR low miss. MNAR high miss.

σε 0.05 0.2 0.8 0.05 0.2 0.8 0.05 0.2 0.8 0.05 0.2 0.8

β0 92 89 93 91 92 89 94 94 94 90 91 88
β1 93 89 93 91 92 88 94 94 94 89 91 88

σ 2
ε 91 86 93 89 95 94 93 94 95 87 90 94

μx 94 94 93 90 92 87 95 93 77 94 86 53

σ 2
x 95 94 92 89 92 87 95 93 89 94 89 88

φ0 − − − − − − 58 41 11 85 72 18
φ1 − − − − − − 64 47 12 85 73 16
xmis,1 95 95 95 95 95 94 95 94 92 95 95 94
xmis,2 95 95 95 95 95 95 95 94 92 95 95 94
xmis,3 95 95 95 95 95 95 95 94 91 95 95 94

not depend on xmis,i. A derivation of (12) and expressions for
the �mis,i, are given in Supplement D of the supplemental ma-
terials.

The right-hand side of (12) does not have a closed-form inte-
gral, so numerical integration is required to obtain the normaliz-
ing factors and required moments. We will take a basic quadra-
ture approach. In the interests of computational efficiency, we
use the same quadrature grid over all 1 ≤ i ≤ nmis. Let

g = (g1, . . . ,gM)

be an equally spaced grid of size M in R. An example of nu-
merical integration via quadrature is

∫ ∞

−∞
z1(x)dx ≈

M∑
j=1

wjz1(gj) = wTz1(g),

where w = (w1, . . . ,wM) is vector of quadrature weights. Ex-
amples of w for common quadrature schemes are

w =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2δ × (1,2,2,2,2,2,2, . . . ,2,2,2,1)

for the trapezoidal rule,
1
3δ × (1,4,2,4,2,4,2, . . . ,4,2,4,1)

for Simpson’s rule,

where δ = (gM − g1)/(M − 1) is the distance between succes-
sive grid points. Next, define the M × (K + 2) matrix:

Cg ≡
⎡
⎢⎣

1 g1 z1(g1) · · · zK(g1)
...

...
...

. . .
...

1 gM z1(gM) · · · zK(gM)

⎤
⎥⎦=
⎡
⎢⎣

Cg1
...

CgM

⎤
⎥⎦ . (13)

Table 3. 99% Wilcoxon confidence intervals based on computation
times, in seconds, from the simulation study described in Section 3.4

MAR models MNAR models

MCMC (5.89, 5.84) (33.8, 33.9)
Var. Bayes (0.0849, 0.0850) (0.705, 0.790)
Ratio (76.6, 78.7) (59.5, 67.8)

For a given quadrature grid g, Cg contains the totality of basis
function evaluations required for variational Bayes updates.

For succinct statement of quadrature approximations to
Eq(xmis)(C) and Eq(xmis)(C

TC) the following additional matrix
notation is useful:

Qg ≡
[

exp

(
−1

2
Cgj�mis,iCT

gj

)
1≤j≤M

]
1≤i≤nmis

and

C ≡
[

Cobs

Cmis

]
,

where Cobs corresponds to the xobs component of C and Cmis

corresponds to the xmis component of C. Clearly

Eq(xmis)(C) ≡
[

Cobs

Eq(xmis)(Cmis)

]
and

Eq(xmis)(C
TC) = CT

obsCobs + Eq(xmis)(C
T
misCmis).

Then we have the following efficient quadrature approxima-
tions:

Eq(xmis)(Cmis) ≈ Qg diag(w)Cg

1T ⊗ (Qgw)
and

Eq(xmis)(C
T
misCmis) ≈ CT

g diag

(nmis∑
i=1

(eT
i Qg) 
 w

eT
i Qgw

)
Cg

Figure 4. DAGs for the three missing data models for nonparamet-
ric regression with mixed model-based penalized spline modeling of
the regression function, given by (11). Shaded nodes correspond to the
observed data.
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with ei denoting the nmis ×1 vector with 1 in the ith position and
zeroes elsewhere. Since there are exponentials in entries of Qg,
some care needs to be taken to avoid overflow and underflow.
Working with logarithms is recommended.

Algorithm 2 chronicles the iterative scheme for nonparamet-
ric regression with predictors MNAR. The lower bound on the
marginal log-likelihood is

log{p(y,xobs,R;q)}

=
(

1

2
nmis − n

)
log(2π) + 1

2
(K + 5 + nmis) − log(σ 2

β )

− 1

2σ 2
β

[∥∥μq(β)

∥∥2 + tr
(
�q(β)

)]+ 1

2
log
∣∣�q(β,u)

∣∣

+ 1

2
log
{
σ 2

q(μx)
/σ 2

μx

}− 1

2σ 2
μx

{
μ2

q(μx)
+ σ 2

q(μx)

}

− Qg diag(w) log(Qg)

1T ⊗ (Qgw)

+ Aε log(Bε) − log	(Aε)

− Aq(σ 2
ε ) log
(
Bq(σ 2

ε )

)+ log
(
Aq(σ 2

ε )

)
+ Au log(Bu) − log	(Au)

− Aq(σ 2
u ) log
(
Bq(σ 2

u )

)+ log
(
Aq(σ 2

u )

)
+ Ax log(Bx) − log	(Ax)

− Aq(σ 2
x ) log
(
Bq(σ 2

x )

)+ log
(
Aq(σ 2

x )

)

Algorithm 2 Iterative scheme for obtaining the parameters in the optimal densities q∗(β,u), q∗(σ 2
ε ), q∗(σ 2

u ), q∗(μx), q∗(σ 2
x ),

q∗(xmis,i), and q∗(φ) for the MNAR nonparametric regression model.
Set M, the size of the quadrature grid, and g1 and gM , the quadrature grid limits. The interval (g1,gM) should contain each
of the observed xi’s. Obtain g = (g1, . . . ,gM) where gj = g1 + (j − 1)δ, 1 ≤ j ≤ M, and δ = (gM − g1)/(M − 1). Obtain the
quadrature weights w = (w1, . . . ,wM) and set Cg using (13). Initialize: μq(1/σ 2

ε ),μq(1/σ 2
x ) > 0, μq(μx), μq(β,u)((K + 2) × 1),

�q(β,u)((K + 2) × (K + 2)), μq(φ)(2 × 1), �q(φ)(2 × 1), and μq(a)(n × 1).
Cycle:

update �mis,i, 1 ≤ i ≤ nmis, using (S.5)–(S.8) in Supplement D.

Qg ←
[

exp

(
−1

2
Cgj�mis,iCT

gj

)
1≤j≤M

]
1≤i≤nmis

; Eq(xmis)(C) ←
[

Cobs
Qg diag(w)Cg

1T⊗(Qgw)

]

for i = 1, . . . ,nmis:

μq(xmis,i) ← {Eq(xmis)(Cmis)
}

i2; σ 2
q(xmis,i)

← Qg diag(w)(g − μq(xmis,i)1)2

1T ⊗ (Qgw)

Eq(xmis)(C
TC) ← CT

obsCobs + CT
g diag

(nmis∑
i=1

(eT
i Qg) 
 w

eT
i Qgw

)
Cg

�q(β,u) ←
{
μq(1/σ 2

ε )Eq(xmis)(C
TC) + 1

σ 2
β

I
}−1

μq(β,u) ← �q(β,u)μq(1/σ 2
ε )Eq(xmis)(C)Ty

σ 2
q(μx)

← 1/
(
nμq(1/σ 2

x ) + 1/σ 2
μx

); μq(μx) ← σ 2
q(μx)

μq(1/σ 2
x )

(
1Txobs + 1Tμq(xmis)

)
Bq(σ 2

ε ) ← Bε + 1

2
‖y‖2 − yTEq(xmis)(C)μq(β,u) + 1

2
tr
{
Eq(xmis)(C

TC)
(
�q(β,u) + μq(β,u)μ

T
q(β,u)

)}
Bq(σ 2

u ) ← Bu + 1

2

{∥∥μq(u)

∥∥2 + tr
(
�q(u)

)}

Bq(σ 2
x ) ← Bx + 1

2

(∥∥xobs − μq(μx)1
∥∥2 + ∥∥μq(xmis)

− μq(μx)1
∥∥2 + nσ 2

q(μx)
+

nmis∑
i=1

σ 2
q(xmis,i)

)

μq(1/σ 2
ε ) ←
(

Aε + 1

2
n

)/
Bq(σ 2

ε ); μq(1/σ 2
x ) ←
(

Ax + 1

2
n

)/
Bq(σ 2

x ); μq(1/σ 2
u ) ←
(

Au + 1

2
K

)/
Bq(σ 2

u )

�q(φ) ←
{

Eq(xmis)(X
TX) + 1

σ 2
φ

I
}−1

; μq(φ) ← �q(φ)Eq(xmis)(X)Tμq(a)

μq(a) ← Eq(xmis)(X)μq(φ) + (2R − 1) 
 (2π)−1/2 exp{−1/2(Eq(xmis)(X)μq(φ))
2}

�((2R − 1) 
 (Eq(xmis)(X)μq(φ)))

until the increase in p(y,xobs,R;q) is negligible.
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+ 1

2

∥∥Eq(xmis)(X)μq(φ)

∥∥2
− 1

2
tr
{
Eq(xmis)(X

TX)
(
μq(φ)μ

T
q(φ) + �q(φ)

)}
+ RT log�

(
Eq(xmis)(X)μq(φ)

)
+ (1 − R)T log

{
1 − �
(
Eq(xmis)(X)μq(φ)

)}
+ 1

2
log

∣∣∣∣ 1

σ 2
φ

�q(φ)

∣∣∣∣− 1

2σ 2
φ

{∥∥μq(φ)

∥∥2 + tr
(
�q(φ)

)}
.

4.1 Illustration

Our first illustration involves data simulated according to

yi ∼ N(f (xi), σ
2
ε ), f (x) = sin(4πx), xi ∼ N

( 1
2 , 1

36

)
,

and

σ 2
ε = 0.35, 1 ≤ i ≤ 300,

and with 20% of the xi’s removed completely at random. This
simulation setting, with identical parameters, was also used in
Wand (2009).

We applied the MCAR analogue of Algorithm 2 and com-
pared the results with MCMC fitting via BRugs. The penalized
splines used the truncated linear spline basis with 30 knots:
zk(x) = (x − κk)+,1 ≤ k ≤ 30, with the knots equally spaced
over the range of the observed xi’s. Truncated linear splines
were used to allow straightforward coding in BUGS. If a com-
parison with MCMC is not being done then O’Sullivan splines
are recommended for variational Bayesian inference in this
context. The hyperparameters were set at the values

σ 2
β = σ 2

μx
= 108 and Aε = Bε = Ax = Bx = 1

100 . (14)

The MCMC sampling involved a burnin of size 20,000, and
a thinning factor of 20 applied to postburn-in samples of
size 200,000 resulting in samples of size 10,000 being re-
tained for inference. In addition, we used the over-relaxed
form of MCMC (Neal 1998). In BRugs this involves setting
overRelax=TRUE in the modelUpdate() function. Using
these settings, all chains appeared to behave reasonably well.

The resulting posterior densities for the model parameters
and three randomly chosen missing xi values are shown in
Figure S.3 in Supplement B of the supplemental materials.
The vertical lines correspond to the true values, except σ 2

u
where ‘truth’ is not readily defined. Good to excellent accu-
racy of variational Bayes is apparent for all posterior densities.
There is some noticeable discordance in the case of σ 2

u . This
is perhaps due to some lack of identifiability for this parame-
ter.

A novel aspect of this example is the multimodality of the
posteriors for the xmis,i. This arises from the periodic nature
of f , since more than one x conforms with a particular y. It is
noteworthy that the variational Bayes approximations are able
to handle this multimodality quite well.

We then applied Algorithm 2 to data simulated according to

yi ∼ N(f (xi), σ
2
ε ), f (x) = sin(4πx2), xi ∼ N

( 1
2 , 1

36

)
,

and

σ 2
ε = 0.35, 1 ≤ i ≤ 500,

and the observed predictor indicators generated according to

Ri ∼ Bernoulli(�(φ0 + φ1xi)) with φ0 = 3 and φ1 = −3.

The hyperparameters were as in (14) and σ 2
φ = 108. We also

ran an MCMC analysis using BRugs. The spline basis func-
tions and MCMC sample sizes were the same as those used
in the MCAR example. Figure S.4 in Supplement B shows the
resulting posterior density functions. As with the parametric re-
gression examples, variational Bayes is seen to have good to
excellent performance for all parameters except φ0 and φ1.

Our last example involves two variables from Ozone data-
frame (source: Breiman and Friedman 1985) in the R package
mlbench (Leisch and Dimitriadou 2009). The response vari-
able is daily maximum one-hour-average ozone level and the
predictor variable is daily temperature (degrees Fahrenheit) at
El Monte, California, U.S.A. The Ozone data frame is such
that five of the response values are missing and 137 of the pre-
dictor values are missing. So that we could apply the methodol-
ogy of the current section directly, we omitted the five records
for which the response was missing. This resulted in a sam-
ple size of n = 361 with nmis = 137 missing predictor val-
ues.

Preliminary checks shown the normality assumption for the
predictors and errors, along with homoscedasticity, to be quite
reasonable. We then assumed MNAR nonparametric regression
model and fed the standardized data into Algorithm 2. MCMC
fitting of the same model via BRugs was also done for com-
parison. The results were then transformed to the original scale.
Figure 5 shows resulting posterior density functions approxi-
mations.

In Figure 6 the fitted function estimates for all three examples
are shown. Good agreement is seen between variational Bayes
and MCMC.

Finally, it is worth noting that these three penalized spline ex-
amples had much bigger speed increases for variational Bayes
compared with MCMC in BUGS. The total elapsed time for the
variational Bayes analysis was 75 seconds. For BRugs, with
the MCMC sample sizes described above, the three examples
required 15.5 hours to run. This corresponds to a speed-up in
the order of several hundreds.

5. DISCUSSION

We have derived variational Bayes algorithms for fast ap-
proximate inference in parametric and nonparametric regres-
sion with missing predictor data. The central finding of this ar-
ticle is that, for using regression models with missing predictor
data, variational Bayes inference achieves good to excellent ac-
curacy for the main parameters of interest. Poor accuracy is re-
alized for the missing data mechanism parameters. As we note
at the end of Section 3.4, better accuracy for these auxiliary
parameters maybe achievable with a more elaborate variational
scheme—in situations where they are of interest. The nonpara-
metric regression examples illustrate that variational Bayes ap-
proximates multimodal posterior densities with a high degree
of accuracy.

The article has been confined to single predictor models so
that the main ideas could be maximally elucidated. Numerous
extensions could be made relatively straightforwardly, based on
the methodology developed here. Examples include missing re-
sponse data, generalized responses, multiple regression, addi-
tive models, and additive mixed models.
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Figure 5. Variational Bayes approximate posteriors for the regression model parameters and four missing xi’s for nonparametric regression
applied to the ozone data with predictors MNAR. The MCMC posteriors are based on samples of size 10,000 and kernel density estimation. The
accuracy values correspond to the definition given at (9). Summary of nonparametric regression for ozone data with with predictor MNAR.

APPENDIX: NOTATION

If P is a logical condition then I(P) = 1 if P is true and I(P) =
0 if P is false. We use � to denote the standard normal distribution
function.

Column vectors with entries consisting of subscripted variables are
denoted by a bold-faced version of the letter for that variable. Round

brackets will be used to denote the entries of column vectors. For ex-
ample x = (x1, . . . , xn) denotes a n × 1 vector with entries x1, . . . , xn.
The element-wise product of two matrices A and B is denoted by
A 
 B. We use 1d to denote the d × 1 column vector with all en-
tries equal to 1. The norm of a column vector v, defined to be

√
vT v,

is denoted by ‖v‖. Scalar functions applied to vectors are evaluated

Figure 6. Posterior mean functions and corresponding pointwise 95% credible sets for all three nonparametric regression examples. The grey
curves correspond to MCMC-based inference, whilst the black curves correspond to variational Bayesian inference.
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element-wise. For example,

�(a1,a2,a3) ≡ (�(a1),�(a2),�(a3)).

The density function of a random vector u is denoted by p(u). The
conditional density of u given v is denoted by p(u|v). The covariance
matrix of u is denoted by Cov(u). The notation x ∼ N(μ,�) means
that the random vector x has a Multivariate Normal distribution with
mean μ and covariance matrix �. A random variable x has an In-
verse Gamma distribution with parameters A,B > 0, denoted by x ∼
IG(A,B), if its density function is p(x) = BA	(A)−1x−A−1e−B/x, x >

0. If yi has distribution Di for each 1 ≤ i ≤ n, and the yi are indepen-

dent, then we write yi
ind.∼ Di.

SUPPLEMENTARY MATERIALS

Additional Results and Derivations: The supplemental ma-
terial is a single document (FaesOrmerodWandSupplement.
pdf, PDF file) with the following four components:

Supplement A: Details of variational Bayes for the MCAR
and MAR parametric regression models.

Supplement B: Accuracy assessment summaries for non-
parametric regression simulations.

Supplement C: Derivation of Algorithm 1.
Supplement D: Derivation of (12) and expression for

�mis,i.

[Received May 2010. Revised February 2011.]

REFERENCES

Albert, J. H., and Chib, S. (1993), “Bayesian Analysis of Binary and Polychoto-
mous Response Data,” Journal of the American Statistical Association, 88,
669–679. [962]

Bishop, C. M. (2006), Pattern Recognition and Machine Learning, New York:
Springer. [959,960,962]

Box, G. P., and Tiao, G. C. (1973), Bayesian Inference in Statistical Analysis,
Reading, MA: Addison-Wesley. [959]

Breiman, L., and Friedman, J. H. (1985), “Estimating Optimal Transformations
for Multiple Regression and Correlation,” Journal of the American Statisti-
cal Association, 80, 580–598. [969]

Crainiceanu, C., Ruppert, D., and Wand, M. P. (2005), “Bayesian Analysis for
Penalized Spline Regression Using WinBUGS,” Journal of Statistical Soft-
ware, 14 (14), 1–24. [959]

Daniels, M. J., and Hogan, J. W. (2008), Missing Data in Longitudinal Studies:
Strategies for Bayesian Modeling and Sensitivity Analysis, Boca Raton, FL:
Chapman & Hall/CRC Press. [959]

Denison, D., Holmes, C., Mallick, B., and Smith, A. (2002), Bayesian Methods
for Nonlinear Classification and Regression, Chichester, U.K.: Wiley. [959]

Devroye, L., and Györfi, L. (1985), Density Estimation: The L1 View, New
York: Wiley. [964]

Flandin, G., and Penny, W. D. (2007), “Bayesian fMRI Data Analysis With
Sparse Spatial Basis Function Priors,” NeuroImage, 34, 1108–1125. [959]

Gelman, A. (2006), “Prior Distributions for Variance Parameters in Hierarchical
Models,” Bayesian Analysis, 1, 515–533. [961]

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2004), Bayesian Data
Analysis, Boca Raton, FL: Chapman & Hall. [959,961]

Girolami, M., and Rogers, S. (2006), “Variational Bayesian Multinomial Probit
Regression,” Neural Computation, 18, 1790–1817. [962]

Gurrin, L. C., Scurrah, K. J., and Hazelton, M. L. (2005), “Tutorial in Biostatis-
tics: Spline Smoothing With Linear Mixed Models,” Statistics in Medicine,
24, 3361–3381. [959]

Hall, P. (1987), “On Kullback–Leibler Loss and Density Estimation,” The An-
nals of Statistics, 15, 1491–1519. [964]

Holmes, C. C., and Held, L. (2006), “Bayesian Auxiliary Variable Models for
Binary and Multinomial Regression,” Bayesian Analysis, 1, 145–168. [964]

Jordan, M. I. (2004), “Graphical Models,” Statistical Science, 19, 140–155.
[959]

Leisch, F., and Dimitriadou, E. (2009), “mlbench 1.1-6: Machine Learning
Benchmark Problems,” R package. Available at http://cran.r-project.org.
[969]

Ligges, U., Thomas, A., Spiegelhalter, D., Best, N., Lunn, D., Rice, K., and
Sturtz, S. (2010), “BRugs 0.5: OpenBUGS and Its R/S-PLUS Interface
BRugs,” R package. Available at http://www.stats.ox.ac.uk/pub/RWin/bin/
windows/contrib/2.14. [959,964,965]

Little, R. J., and Rubin, D. B. (2004), Statistical Analysis With Missing Data
(2nd ed.), New York: Wiley. [959,961]

Luenberger, D. G., and Ye, Y. (2008), Linear and Nonlinear Programming
(3rd ed.), New York: Springer. [960]

Lunn, D. J., Thomas, A., Best, N., and Spiegelhalter, D. (2000), “WinBUGS—
A Bayesian Modelling Framework: Concepts, Structure, and Extensibility,”
Statistics and Computing, 10, 325–337. [965]

McGrory, C. A., and Titterington, D. M. (2007), “Variational Approximations
in Bayesian Model Selection for Finite Mixture Distributions,” Computa-
tional Statistics and Data Analysis, 51, 5352–5367. [959]

Neal, R. (1998), “Suppressing Random Walks in Markov Chain Monte Carlo
Using Ordered Over-Relaxation,” in Learning in Graphical Models, ed.
M. I. Jordan, Dordrecht: Kluwer Academic, pp. 205–230. [969]

Ormerod, J. T., and Wand, M. P. (2010), “Explaining Variational Approxima-
tions,” The American Statistician, 64, 140–153. [959,960]

Parisi, G. (1988), Statistical Field Theory, Redwood City, CA: Addison-Wesley.
[960]

Pearl, J. (1988), Probabilistic Reasoning in Intelligent Systems, San Mateo, CA:
Morgan Kaufmann. [961,962]

R Development Core Team (2010), R: A Language and Environment for Statis-
tical Computing, Vienna, Austria: R Foundation for Statistical Computing.
Available at http://www.R-project.org. [959,965]

Robert, C. P., and Casella, G. (2004), Monte Carlo Statistical Methods
(2nd ed.), New York: Springer-Verlag. [960]

Ruppert, D., Wand, M. P., and Carroll, R. J. (2003), Semiparametric Regression,
New York: Cambridge University Press. [959]

Teschendorff, A. E., Wang, Y., Barbosa-Morais, N. L., Brenton, J. D., and
Caldas, C. (2005), “A Variational Bayesian Mixture Modelling Framework
for Cluster Analysis of Gene-Expression Data,” Bioinformatics, 21, 3025–
3033. [959]

Wahba, G. (1978), “Improper Priors, Spline Smoothing and the Problem of
Guarding Against Model Errors in Regression,” Journal of the Royal Sta-
tistical Society, Ser. B, 40, 364–372. [959]

Wand, M. P. (2009), “Semiparametric Regression and Graphical Models,” Aus-
tralian and New Zealand Journal of Statistics, 51, 9–41. [959,969]

Wand, M. P., and Ormerod, J. T. (2008), “On O’Sullivan Penalised Splines
and Semiparametric Regression,” Australian and New Zealand Journal of
Statistics, 50, 179–198. [966]

Wand, M. P., and Ripley, B. D. (2009), “KernSmooth 2.23: Functions for Ker-
nel Smoothing Corresponding to the Book: Wand, M. P., and Jones, M. C.
(1995), Kernel Smoothing,” R package. Available at http://cran.r-project.
org. [964]

Wasserman, L. (2004), All of Statistics, New York: Springer. [960]

http://cran.r-project.org
http://www.stats.ox.ac.uk/pub/RWin/bin/windows/contrib/2.14
http://www.R-project.org
http://cran.r-project.org
http://www.stats.ox.ac.uk/pub/RWin/bin/windows/contrib/2.14
http://cran.r-project.org

	Variational Bayesian Inference for Parametric and Nonparametric Regression With Missing Data
	Introduction
	Elements of Variational Bayes
	Directed Acyclic Graphs and Markov Blanket Theory

	Simple Linear Regression With Missing Predictor Data
	Incorporation of Auxiliary Variables
	Directed Acyclic Graphs Representations
	Approximate Inference via Variational Bayes
	Assessment of Accuracy
	Credible Interval Coverage
	Prediction Interval Coverage
	Speed Comparisons

	Nonparametric Regression With Missing Predictor Data
	Illustration

	Discussion
	Appendix: Notation
	Supplementary Materials
	References


