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Abstract

Generalized additive models have become one of the most widely used modern statistical tools.
Traditionally, they are 0t through scatterplot smoothing and the back0tting algorithm. However,
a more recent development is the direct 0tting through the use of low-rank smoothers (Hastie,
J. Roy. Statist. Soc. Ser. B 58 (1996) 379). A particularly attractive example of this is through
use of penalized splines (Marx and Eilers, Comput. Statist. Data Anal. 28 (1998) 193). Such
an approach has a number of advantages, particularly regarding computation. In this paper, we
exploit the explicitness of penalized spline additive models to derive some useful and revealing
theoretical approximations. c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Asymptotic approximation; Automatic smoothing parameter selection; Degrees of
freedom; Nonparametric regression

1. Introduction

Generalized additive models (GAM) are among the most practically used modern
statistical techniques. Examples of their use in applications includes political science
(Beck and Jackman, 1998), economics (Linton and HAardle, 1996) and environmental
epidemiology (Schwartz, 1994). The main catalysts for this widespread use by prac-
titioners is the exemplary monograph on the topic, Hastie and Tibshirani (1990), and
the availability of the function gam() in the S-PLUS language for 0tting such models
(see e.g. Chambers and Hastie, 1991).
One aspect of GAM that has been slow to develop is the statistical properties of

the estimation strategies for 0tting such a model. Perhaps the main reason for this is
the nonexplicit nature of the most common type of GAM 0tting procedure: back2t-
ting combined with local scoring (Hastie and Tibshirani, 1990). This nonexplicitness
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appears to be the main motivation for the marginal integration approach to additive
model 0tting (Linton and Nielsen, 1995) and a sophisticated theory now exists for this
strategy (e.g. Fan et al., 1998). The statistical properties of additive models based on
back0tting have since been derived by Opsomer and Ruppert (1997), Opsomer (2000)
and Wand (1999a). Claeskens and Aerts (2000) examine extensions of this theory to
generalized additive models.
An attractive alternative to back0tting and marginal integration is direct 0tting based

on low-rank smoothers (Hastie, 1996). Marx and Eilers (1998) demonstrate how this
can be achieved using penalized splines, also known as P-splines. This approach has
chieFy been motivated by computational expediency. However, the directness of the
method also means that the estimator has an explicit form. This paper exploits this
fact. We derive simple closed form approximations to risk and degrees of freedom of
the estimator and its components, not just for ordinary additive models but for GAM.
In Section 2, the ordinary additive model is treated. Recursion formulae for the over-

all 0t in terms of sub-models 0ts are developed. From this an asymptotic approximation
of the overall 0t is derived, which forms the basis of the risk and degrees of freedom
approximations. The results are both useful and revealing. For example, they can be
used to provide rough starting values for the smoothing parameters. They also provide
some backup for commonly used degrees of freedom approximations.
Section 3 repeats this for more complicated settings: semiparametric models, gener-

alized additive models and additive generalized estimating equations.

2. Additive models

In this section, we will study the penalized regression spline estimators in the stan-
dard additive models framework. In these models the response Yi (i=1; : : : ; n) depends
in an additive way on the d covariates, x1i ; : : : ; xdi through arbitrary univariate functions
fj,

Yi= 
0 +
d∑

j=1
fj(xji) + �i: (1)

It is assumed that the errors are independent and identically distributed with mean zero,
variance �2 and are independent of the covariates. Each of the functions fj will be
estimated by a degree pj penalized spline estimator with smoothing parameter �j.
Note that, due to identi0ability requirements, the fj in (1) are de0ned only up to an

additive constant. Therefore, they can be replaced by fj(xji) − 1=n
∑n

i=1 fj(xji). This
makes 
0 orthogonal to the fj’s. The estimate of 
0, 
̂0 = KY , is independent of the
xji’s. Since KY can be subtracted from the Yi’s without aLecting the model 0tting we
can assume, without loss of generality, that 
0 = 0. This convention will be made from
here onwards.
For any (n× m) matrix C, denote by C∗ the centered matrix

C∗=(I − 11T=n)C;
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where I is the identity matrix and 1 is an n× 1 column of ones. The notation 0p×q is
shorthand for the p × q matrix with zero in each position. A similar de0nition, with
one instead of zero, applies to 1p×q. For any real number u, we de0ne u+ =max(0; u).
In matrix notation we can write the model as

Y=
d∑

j=1
fj + ”; cov(”)= �2I; (2)

where Y= [Y1; : : : ; Yn]T; fj = [fj(xj1); : : : ; fj(xjn)]T and ”= [�1; : : : ; �n]T. Let f =
∑d

j=1 fj.
The penalized spline estimate of f is

f̂�=G�Y where G�=X(XTX + A�)−1XT

with centred design matrix

X= [X∗
1 · · ·X∗

d]; A� =blockdiag
16j6d

(�jDj);

Xj =



xj1 · · · xpj

j1 (xj1 − �j1)
pj
+ · · · (xj1 − �jKj)

pj
+

...
. . .

...
...

. . .
...

xjn · · · xpj
jn (xjn − �j1)

pj
+ · · · (xjn − �jKj)

pj
+


 ; Dj =diag(0pj×1; 1Kj×1);

�j1; : : : ; �jKj (j=1; : : : ; d) is a set of knots in the jth direction and pj is the degree
of the splines used in direction j. Note that Xj is a basis for the set of piecewise
continuous pjth degree polynomials with knots, or join points, at the �jk and is some-
times referred to as the truncated polynomial basis. The estimator can be reformulated
in terms of other bases such as the B-spline basis (Eilers and Marx, 1996) and the
Demmler–Reinsch basis (Nychka and Cummins, 1996). These alternative bases have
better numerical properties, so they are preferable for computation. But for formulation
and theory the simplicity of the truncated polynomial basis is preferred.
The knots are usually taken to be relatively “dense” among the observations in an

attempt to capture the curvature in fj. A reasonable allocation rule is one knot for
every 4–5 observations, up to a maximum of about 40 knots. Ruppert and Carroll
(2000) describe an algorithm for choosing the number of knots, and demonstrate its
eLectiveness through simulation. Subscripts denoting the dependence of matrices on the
smoothing vector �= [�1; : : : ; �d]T, the vector of penalty parameters, will be omitted,
unless �= 0, in which case a subscript 0 will be used.
For any j=1; : : : ; d, the full smoother matrix G can be decomposed as

G=Gj +G[−j];

where

Gj = [0 · · · 0 Xj 0 · · · 0](XTX + A)−1XT; (3)

G[−j] = [X1 · · ·Xj−1 0 Xj+1 · · ·Xd](XTX + A)−1XT: (4)
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The corresponding additive component 0ts are

f̂ j =GjY and f̂ [−j] =G[−j]Y:

In the model with only covariate xj, the regression spline smoother matrix is

Sj =Xj(XT
j Xj + Aj)−1XT

j : (5)

In the model with all covariates except xj, the regression spline smoother matrix is

S[−j] =X[−j]{XT
[−j]X[−j] + A[−j]}−1XT

[−j]; (6)

where

X[−j] = [X1 · · ·Xj−1Xj+1 · · ·Xd] and A[−j] = blockdiag
16i6d; i �=j

(�iDi):

The following recursive formula, which we call Result 1, is an important stepping
stone towards obtaining approximations in penalized spline additive models. For any
covariate xj (j=1; : : : ; d), the result allows one to write the full smoother matrix G in
terms of the design matrix Xj and the smoother matrix in the sub-model corresponding
to deletion of the jth covariate.

Result 1. For any j=1; : : : ; d;

G=S[−j] + (I − S[−j])Gj (7)

and

Gj =Xj{XT
j (I − S[−j])Xj + Aj}−1XT

j (I − S[−j])

= Sj[I − X[−j]{XT
[−j](I − Sj)X[−j] + A[−j]}−1XT

[−j](I − Sj)]; (8)

if the inverse matrices exist.

The derivation of this result is provided in the Appendix.
To construct the additive model smoother matrix Gj, it is suQcient to know the

smoother matrix S[−j] and the design matrix Xj, or, using the equivalent expression
(8), the univariate smoother matrix Sj and the design matrix X[−j] corresponding to
the d− 1 other covariates. Hence, this recursive formula shows how the full smoother
matrix G can be built from lower dimensional pieces. Eq. (7) is comparable to the
result of Lemma 2:1 in Opsomer (2000), where, for local polynomial estimators using
back0tting, a similar identity can be obtained.
Using formula (7), we obtain:

Result 2. Assuming that �→ 0 we have

G=G0 −
d∑

j=1
�jB̃j + o

(
d∑

j=1
�jB̃j

)
; (9)

where

B̃j = X̃j(X̃
T
j X̃j)−1Dj(X̃

T
j X̃j)−1X̃

T
j and X̃j =(I − S0; [−j])Xj;

provided that all inverse matrices exist.
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The matrix G0 is the usual “hat” matrix for unpenalized models (�= 0). The matrix
X̃j is obtained by projecting Xj orthogonal to the subspace determined by X[−j]. Details
on the derivation of Result 2 can be found in the Appendix.
In the next two subsections, we show how approximation (9) can be used to aid

practical implementation of additive models.

2.1. Approximation of the risk

Our 0rst application of the results of the preceding section is to approximate the
risk in an additive model. Such approximations have the advantage of being simpler
to optimize and can, perhaps, aid the practical selection of the smoothing parameters.
For convenience, we will work with the mean average squared error (MASE)

MASE(f̂)=
1
n
E||f̂ − f ||2:

This can be decomposed into the average variance plus the average squared bias and
then simpli0ed to give:

MASE(f̂)=
�2

n
tr(G2) +

1
n
||(G − I)f ||2:

Result 3 follows from this expression and (9):

Result 3. The leading terms in the asymptotic expansion of MASE(f̂) as �→ 0 are

AMASE(f̂) ≡ 1
n

[
�2
{

d∑
j=1
(pj + Kj)− 2�Tq

}
+ �TQ�

]
;

where the entries of q (d× 1) and Q (d× d) are qj = tr(B̃j); and

Qjj′ =(B̃jf)T(B̃j′ f) + �2 tr(B̃jB̃j′):

The AMASE-optimal smoothing parameters are therefore given by

�AMASE = �2Q−1q: (10)

An application of this result is depicted in Fig. 1. It shows the result of applying (10)
to the Californian air pollution data from Breiman and Friedman (1985), and used for
illustratory purposes by Hastie (1996). Of course (10) requires knowledge of f and �2,
so preliminary estimates of those were plugged in. These were obtained using blockwise
quadratic 0ts as suggested by HAardle and Marron (1995) and Ruppert et al. (1995). As
in the latter reference, Mallows’ Cp was used to choose among all blockwise quadratic
0ts with 4 or less blocks. Six knots, equally spaced with the quantiles, were used for
each function, and the estimate of �AMASE was (0:00011; 0:000015; 0:000088).
Comparison of Fig. 1 with Fig. 5 of Hastie (1996) shows the estimated functions

for Dagget pressure gradient and Inversion base temperature being roughly
comparable. However, that for Inversion base height is quite a bit more wiggly.
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Fig. 1. Penalized spline additive model 0t to Californian air pollution data. The amount of smoothing is
obtained by application �AMASE with a preliminary estimate of the fj’s obtained via piecewise quadratic
0tting and Mallows’ Cp. The shaded regions correspond to pointwise 2× standard error bands.

As a check, we 0t the data using S-PLUS’s gam() with default smoothing parameter
choice and subtracted oL the 0tted values for Dagget pressure gradient and
Inversion base temperature from the response. We then applied smooth.spline()
to resulting the scatterplot, with generalized cross-validation used to select the smooth-
ing parameter. It chose an even larger number of degrees of freedom, so there is some
corroboration for the �AMASE-based result obtained here.
While this is just one example, it indicates that �AMASE can be useful for getting an

idea of the amount of smoothing required for 0tting an additive model.

2.2. Approximation of the degrees of freedom

In an additive model with d components, the degrees of freedom for component f̂ j
is de0ned to be

df j = tr(Gj):

While this is straightforward to compute using the full design matrix X, it is often
desirable to have an approximation to this quantity that uses only information about
component j. In this way, the smoothing parameter corresponding to a particular
degrees of freedom value can be speci0ed. A natural candidate for this is

tr(Sj)= tr{(XT
j Xj + �jDj)−1XT

j Xj};
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Table 1
Comparison between tr(Sj) and tr(Gj) for 0t to Californian air pollution
data

j=1 j=2 j=3

tr(Gj) (exact) 9.036 11.803 9.884
tr(Sj) (approx.) 9.136 11.886 9.651
tr(Gj)=tr(Sj) 0.989 0.993 1.024

which has the advantage that it depends only on �j, and thus allows for easier determi-
nation of the smoothing parameter corresponding to the speci0ed degrees of freedom
value. This approximation is used, for example, by the function gam() in the S-PLUS
computing package (see e.g. Hastie and Tibshirani, 1990, p. 158).
From (8) we obtain:

Result 4. For � tending to 0 we have

tr(Gj)
tr(Sj)

− 1=− �j
tr[X[−j]{XT

[−j](I − Sj0)X[−j]}−1XT
[−j]Bj]

pj + Kj − �j tr(Bj)
{1 + o(1)}

where Bj =Xj(XT
j Xj)−1Dj(XT

j Xj)−1XT
j .

This result shows that, for �j → 0, tr(Sj) is asymptotic to tr(Gj), giving some
justi0cation for its use.
The derivation of Result 4 is given in the Appendix.
We tested out the accuracy of this approximation for the 0t shown in Fig. 1. The

results are given in Table 1. It shows that the accuracy is very reasonable in this case.

3. Extensions

In this section, we consider two important extensions of the classical additive model.
The 0rst extension allows one to model some of the covariates in a parametric way,
while others are modelled nonparametrically using penalized regression splines. It turns
out that the theoretical results for this semiparametric model are very similar to the full
nonparametric case. In the second subsection, we will extend the above calculations to
the broad class of generalized additive models.

3.1. Semiparametric models

When penalized regression splines are used to model the nonparametric compo-
nents of a semiparametric model, the same methodology as in fully nonparametric
models can be used. If X1; : : : ;Xq (q¡d) denote the design matrices of the paramet-
ric components, setting �1 = · · ·= �q=0 ensures that these components are not being
penalized. With this simple adjustment, we can estimate simultaneously all parametric
and nonparametric components.



462 M. Aerts et al. / Journal of Statistical Planning and Inference 103 (2002) 455–470

A partitioning of the design matrix in the following way,

X= [XparmXnonp]; where Xparm = [X∗
1 · · ·X∗

q ] and Xnonp = [X∗
q+1 · · ·X∗

d];

provides us an easy formula to study separately the parametric and nonparametric parts
of the model. Note that in the semiparametric case the parametric design matrices do
not contain an intercept term. Using formulas for the inverse of a partitioned matrix,
we obtain the following expression for the smoother matrix G,

G=Xparm(XT
parmXparm)

−1XT
parm + R(RTR + Anonp)−1RT (11)

where

R=(I − Xparm(XT
parmXparm)

−1XT
parm)Xnonp and Anonp = blockdiag

q+16j6d
(�jDj):

This implies that the estimator f̂ can be written as the sum of the regression estimator
for the parametric part in Xparm and the regression spline estimator for the other part,
after projection of Xnonp orthogonal to the Xparm-subspace. Matrix G can also be written
as the sum of a parametric part

Gparm =Xparm(XT
parmXparm)

−1XT
parm{I − Xnonp(RTR + Anonp)−1RT}

and a nonparametric part

Gnonp =Xnonp(RTR + Anonp)−1RT (12)

which can be used to obtain separate estimators f̂parm =GparmY and f̂nonp =GnonpY for,
respectively, the parametric and nonparametric components. Note that if there is no
parametric part (Xparm = 0), everything reduces to the results of Section 2, whereas for
a true semiparametric model, the estimator of the nonparametric part is given by (see
Eq. (12))

Xnonp(XT
nonpWXnonp + Anonp)−1XT

nonpWY;

where W= I − Xparm(XT
parmXparm)

−1XT
parm.

Also in a semiparametric model an optimal smoothing parameter can be obtained
by minimizing the MASE with respect to �. The second term in the right-hand side of
Eq. (11) shows that this boils down to replacing X by R in Section 2.1. Another strat-
egy is to select the smoothing parameters optimally for estimation of the nonparametric
part only. In this case we focus on matrix (12), which diLers from the second term in
(11) by the matrix W. Because of this, the expression for the asymptotically optimal
smoothing parameter becomes more complicated and resembles the formula which will
be given in the next section.

3.2. Generalized additive models

Model (2) is mainly used for normally distributed errors. This Gaussian regres-
sion model is a member of the class of generalized linear models (GLM), see, e.g.,
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McCullagh and Nelder (1989). In all these GLM, the likelihood of the response belongs
to an exponential family and can be written as follows,

exp
{
y�− b(�)

a(�)
+ c(y; �)

}
;

where � is the so-called natural parameter, which is related to the mean response in
the following way, db(�)=d�=E(Y )= !, and � is a dispersion parameter. A GLM is
further speci0ed by a known “link” function g(·), and #= g(!) is called the systematic
component.
Instead of modelling # as a linear function of the covariates, which would result

in the classical generalized linear model, we can use a nonparametric estimator in an
additive models framework. More speci0cally, as in Hastie and Tibshirani (1990), we
assume #(x1; : : : ; xd)= #1(x1) + · · ·+ #d(xd): We will estimate each of these functions
#j using penalized regression splines of degree pj. This means that each additive
component �j = [#j(xj1); : : : ; #j(xjn)]T is modelled as Xj�j with Xj as in Section 2. The
parameter vector �= [�T

1 ; : : : ; �
T
d ]

T can now be estimated by maximizing the following
penalized log likelihood function:

n∑
i=1
[Yi�(x1; : : : ; xn; �)− b{�(x1; : : : ; xn; �)}]=a(�)− 1

2
�TA�:

For U
 the vector of 0rst partial derivatives and J
 the matrix of minus second partial
derivatives of the log likelihood with respect to �, we immediately obtain that the
(k + 1)st update in a Newton–Raphson iterative procedure is given by

�(k+1) = (J
(k) + A)−1(J
(k)�
(k) +U
(k) )

or, by the chain rule,

�(k+1) = (XTJ#(k)X + A)−1XTJ#(k) (�
(k) + J−1

#(k)U#(k) ); (13)

with A as in Section 2 and with L(·) denoting the likelihood of the data,

J#=− diag16i6n

{
@2 log L(Yi; xi ; �)

@#2

}

and

U#=
{
@ log L(Y1; x1; �)

@#
; : : : ;

@ log L(Yn; xn; �)
@#

}T

:

Note that this estimate is a special case of the class of estimators presented in Marx
et al. (1992).
If the observed Fisher information matrix is replaced by its expectation I
=E(J
),

we obtain the iterative solutions of a Fisher scoring procedure. Note that these two
algorithms coincide if the canonical link function is used, that is, if #= �.
From Eq. (13) it is immediately clear that an equivalent way of obtaining the esti-

mators �̂ is via iteratively reweighted ridge regression, where the adjusted dependent
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variable is de0ned as Z#(k) = �(k)+J
−1
#(k)U#(k) . A 0rst order approximation of the estimator

of the coeQcient � is given by

�̂=(XTJ#X + A)−1XTJ#Z#;

which allows us to extend the asymptotic results of Section 2 to generalized
additive models. For Gaussian responses, all results shown below simplify to those of
Section 2.

3.2.1. Approximation of the risk
The smoothing parameter � will be selected by extending the de0nition of MASE

to the context of generalized additive models. The overall risk is now measured by

MASE(�̂)=
1
n
||�̂− �||2:

This can be rewritten as,

MASE(�̂)=
1
n
tr{GVar(U#)G}+ 1

n
||GI#X� − �||2;

where G=X(I
+A)−1XT. The asymptotic approximation to MASE is given in Result
5. Its derivation is similar to that of Result 3 and so is not presented.

Result 5. For � tending to 0;

AMASE(�̂)=
1
n
[�TQ� − 2�Tq + tr{G0Var(U#)G0}]

where q (d× 1) and Q (d× d) have entries qj = tr{B̃j Var(U#)G0},
Qjj′ =(B̃jI#X�)T(B̃j′I#X�) + tr{(B̃j)TVar(U#)B̃j′};

B̃j = X̃j(XT
j I#X̃j)−1Dj(XT

j I#X̃j)−1X̃
T
j and X̃j =(I − S0; [−j]I#)Xj:

The AMASE-optimal smoothing parameters are

�AMASE =Q−1q:

3.2.2. Approximation of the degrees of freedom
We follow Hastie and Tibshirani (1990) in de0ning the degrees of freedom for the

jth component in a generalized additive model as dfj = tr(GjF) where now

Gj = [0 · · · 0 Xj 0 · · · 0](XTFX + A)−1XT

with F either the observed or the expected Fisher information matrix with respect to �.
As demonstrated in the Appendix, since we can show that

tr(GjF)
tr(SjF)

− 1=− �j
tr[X[−j]{XT

[−j]F(I − Sj0F)X[−j]}−1XT
[−j]FBjF]

pj + Kj − �j tr{(XT
j FXj)−1Dj}

{1 + o(1)};
(14)
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where

Bj =Xj(XT
j FXj)−1Dj(XT

j FXj)−1XT
j and Sj =Xj(XT

j FXj + Aj)−1XT
j ;

the degree of freedom value dfj might be approximated by tr(SjF). This has the
computational advantage that only that part of the design matrix related to the jth
covariate needs to be used.

3.2.3. Semiparametric models
If some of the covariates of a generalized additive model are modelled parametri-

cally and others nonparametrically, the resulting semiparametric model can be handled
similarly, as before. Assume that the 0rst q covariates are the components of the para-
metric part, then we take �1 = · · ·= �q=0. All results of Section 3.2 remain valid, and
a similar decomposition as in Section 3.1 holds. Using the same partitioning of the
design matrix as in Section 3.1, the smoother matrix G is now obtained as

G=Xparm(XT
parmFXparm)

−1XT
parm + R(XT

nonpFR + Anonp)−1RT

where R= {I − Xparm(XT
parmFXparm)

−1XT
parmF}Xnonp. Separate estimators for the para-

metric and the nonparametric components can be obtained using the following smoother
matrices:

Gparm =Xparm(XT
parmFXparm)

−1XT
parm{I − Xnonp(RTFR + Anonp)−1RT}

and

Gnonp =Xnonp(RTFR + Anonp)−1RT:

If we focus on the nonparametric part only, we can write the estimator of the non-
parametric part of � as follows,

Xnonp(XT
nonpWXnonp + Anonp)−1XT

nonpWZ;

where now

W=F{I − Xparm(XT
parmFXparm)

−1XT
parmF}: (15)

3.3. Multiparameter models and generalized estimating equations

Wild and Yee (1996) and Yee and Wild (1996) introduced the use of vector smooth-
ing splines in the multivariate regression and generalized estimating equations (GEE)
context, where the parameter vector of interest is modelled in an additive way. The
selection of the smoothing parameters and the approximation of the degrees of freedom
can be obtained similarly as in the previous section, after introducing the following no-
tation. In most cases, an estimator for the vector �=(�1; : : : ; �m) is obtained by solving
a set of estimating equations:

n∑
i=1

 k(Yi; xi ; �)= 0; k =1; : : : ; m: (16)



466 M. Aerts et al. / Journal of Statistical Planning and Inference 103 (2002) 455–470

If the likelihood of the data is known,  k might be the partial derivative of the log
likelihood with respect to �k . For example, for m=2, �1 can be the mean and �2 the
log variance of normally distributed data. For robust estimators, Eq. (16) might lead
to M -estimators of � (Huber, 1981), or (16) can represent some set of generalized
estimating equations (Liang and Zeger, 1986). In the latter case, usually the response
vector is multidimensional.
In a regression model, the parameters are modelled as function of the covariates

xi= [xT
1i ; : : : ; x

T
mi]

T. Let


�1(x1i)
...

�m(xmi)


=




�1(x1i1; : : : ; x1id1 )
...

�m(xmi1; : : : ; xmidm)




be the parameter vector of interest. The covariate vectors xji (j=1; : : : ; m) can be the
same, diLerent for each parameter �j or partly overlapping with another vector xki

(k 	= j). For example, in toxicity studies, typically resulting in clustered binary data, a
given dose might have its inFuence on both proportion of success (e.g., inverse logit of
�1) and association between outcomes (represented by �2), but, say, individual weight
of the subjects might be included only in the success probability parameter, and not in
the association part.
In additive models, each of these parameter functions is, for some unknown functions

fkj (k =1; : : : ; m; j=1; : : : ; dk)

�k(xki)= 
k0 +
dk∑
j=1

fkj(xkij):

For identi0ability purposes, we subtract the mean of the function values from each of
the fkj. By introducing a regression spline design matrix Xkj (de0ned similarly as the
matrix Xj in Section 2), we de0ne the design matrix for �k as Xk = [Xk1 · · ·Xkdk ], such
that �k(xki)=XT

k �k . The design matrix X is now de0ned as X=blockdiag16k6m (Xk)
and �=(�T

1 ; : : : ; �
T
m)

T. The (observed) “Fisher Information matrix” is J
=XTJ�X
where J� is a partitioned matrix with (j; k)th block

J�; jk =− diag
16i6n

@ j
@�k
(Yi;Xi ; �):

From this, the expected matrices I
 and I� are easily obtained. The “score” vector U�

is the column vector

[ 1(Y1; x1; �); : : : ;  1(Yn; xn; �); : : : ;  m(Yn;Xn; �)]T

and U
=XTU�.
With these ingredients we can obtain an estimator for � via the iteratively reweighted

ridge regression scheme, as presented in Section 3.2. To prove the results of Section
2 for general estimating equations, take W= J
 in the Appendix. The semiparametric
case can be handled by similar adjustments as explained in Sections 3.1 and 3.2.3.
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4. Discussion

The explicitness of the penalized spline approach to additive modelling has several
advantages. In this paper, we have shown that it allows for theoretical analyses via
relatively simple mathematical methods. Closed form expressions for the asymptotically
optimal smoothing parameters and the error in common degrees of freedom approx-
imations are useful outcomes of this analysis. It is our hope that this paper lays the
foundation for revealing analyses of more complex penalized spline models.
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Appendix A.

All calculations will be presented generally, using a symmetric weight matrix W. To
obtain the results of Section 2 take W= I. For the nonparametric part of a semipara-
metric model, W is de0ned in Section 3.1, S[−j] and Gj are de0ned similarly as in (3)
and (6), but with the matrices X and A replaced by Xnonp and Anonp respectively. For
the generalized additive model, W is the Fisher information matrix. And for the semi-
parametric generalized additive model, W is de0ned in (15). If W is positive de0nite
or a projection matrix, the following results hold.

A.1. Derivation of result 1

For j=1; : : : ; d, we rewrite G in the following way,

G=X(XTWX + A)−1XT=G[−j] +Gj

= (X[−j];Xj)

(
(X[−j])TWX[−j] + A[−j] (X[−j])TWXj

XT
j WX[−j] XT

j WXj + Aj

)−1
XT:

Using formulae for the inverse of a partitioned matrix, (see, e.g., Searle, 1982, p. 260),

G[−j] =S[−j][I −WXj{XT
j W(I − S[−j]W)Xj + Aj}−1XT

j (I −WS[−j])] (17)

Gj =Xj{XT
j W(I − S[−j]W)Xj + Aj}−1XT

j (I −WS[−j]): (18)

Note that for W= I, the expression for Gj reduces to (8). From (17) and (18), the
recursive formula

G=S[−j] + (I − S[−j]W)Gj (19)

is easily obtained.
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A.2. Derivation of result 2

If d=1, the result is shown by extending the result of Wand (1999b) to allow for
a general weight matrix W. Suppose that (9) is true for j=d− 1, that is,

S[−d] =S0; [−d] −
d−1∑
j=1

�jB̃
[−d]
j + o

(
d−1∑
j=1

�jB̃
[−d]
j

)
; (20)

where B̃
[−d]
j is de0ned similar to B̃j, but now in the model with all covariates except xd.

Starting from (18) and using (20), we can approximate Gd by

Gd ≈Xd

{
XT

dWXd − XT
dWS0; [−d]W +

d−1∑
j=1

�jXT
dWB̃

[−d]
j WXd + �dDd

}−1

×XT
d (I −WS[−d])

=Xd{XT
dW(I − S0; [−d]W)Xd + L�}−1XT

d (I −WS[−d])

=Xd{I + (XT
dW(I − S0; [−d]W)Xd}−1L�}−1(XTW{I − S0; [−d]W)Xd}−1

×XT
d (I −WS[−d]);

where

L� = �dDd +
d−1∑
k=1

�kXT
dWB̃

[−d]
k WXd:

Then, (19) leads to the following approximation,

G≈G0 −
d−1∑
j=1

�j{B̃[−d]
j + [(I − S0; [−d]W)Xd{XT

dW(I − S0; [−d]W)Xd}−1

×XT
dW − I]B̃

[−d]
j WXd{XT

dW(I − S0; [−d]W)Xd}−1XT
d (I −WS0; [−d])

− (I − S0; [−d]W)Xd{XT
dW(I − S0; [−d]W)Xd}−1XT

dWB̃
[−d]
j } − �dB̃d;

where, from (18) and (19) with �= 0,

G0 = S0; [−d] + (I − S0; [−d]W)Xd{XT
dW(I − S0; [−d]W)Xd}−1

×XT
d (I −WS0; [−d]):

Since

B̃j = (I − (I − S0; [−d]W)Xd{XT
dW(I − S0; [−d]W)Xd}−1XT

dW)B̃
[−d]
j

×(I − (I − S0; [−d]W)Xd{XT
dW(I − S0; [−d]W)Xd}−1XT

dW)
T;

the result is proven.
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A.3. Derivation of result 4

Using the equivalent de0nition of the inverse of XTWX + A, we obtain, similarly
as (17) and (18), that

Gj =Sj{I −WX[−j]{XT
[−j]W(I − SjW)X[−j] + A[−j]}−1XT

[−j](I −WSj)}:
Then,

tr(SjW −GjW) = tr(X[−j]{(X[−j])TW(I − SjW)X[−j] + A[−j]}−1

×(X[−j])T(I −WSj)WSjW):

For �→ 0, by (9), we have the approximation

(I −WSj)WSjW ≈ �jBjW;

from which, by (9), the numerator of (14) is easily obtained.
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