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Abstract
The Grouped Horseshoe distribution arises from hierarchical structures in the recent Bayesian

methodological literature aimed at selection of groups of regression coefficients. We isolate
this distribution and study its properties concerning Bayesian statistical inference. Most, but
not all, of the properties of the univariate Horseshoe distribution are seen to transfer to the
grouped case.
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1 Introduction

Since around 2010, numerous continuous distributions have been proposed for use as prior
distributions of coefficients in Bayesian regression-type models. Table 1 of Bai & Ghosh (2018)
provides seven such examples, all of which correspond to scale mixtures of Normal density
functions with various polynomial-tailed density functions. In this article we focus on one of
these examples known as the horseshoe prior. The underlying Horseshoe distribution (Carvalho
et al., 2010) corresponds to the mixing distribution being F1,1 for variance parameter scale
mixing or Half-Cauchy for standard deviation scale mixing.

Most of this literature is concerned with variable selection for individual coefficients. The
grouped extension is concerned with simultaneous selection of a group of variables. For exam-
ple, in additive model selection (e.g. Schiepl et al., 2012; He & Wand, 2024) a group of variables
corresponds, typically, to a set of spline basis functions of a continuous predictor. Grouped
variable selection is an attractive mechanism for deciding between the continuous predictor
having a linear or non-linear effect. Our focus in this article is the grouped extension of the
horseshoe prior as proposed by Xu et al. (2016).

Our first goal is determination of the underlying multivariate density function correspond-
ing to grouped horseshoe variable selection. This involves integrating out the scale mixing
density function and leads to a family of distributions, indexed by dimension, that we label
the Grouped Horseshoe distribution. We derive an expression for the Grouped Horseshoe den-
sity function in terms of the generalized exponential integral functions. As for the ordinary
Horseshoe distribution, the Grouped Horseshoe density function is shown to have a pole at
the origin.

We then investigate the grouped extensions of the various Bayesian statistical inference
properties of horseshoe priors studied by Carvalho et al. (2010). The score function behaviour
and robustness to large signals property of horseshoe priors, studied in Section 2 of Carvalho et
al. (2010), is shown to extend to the grouped situation. However, the super-efficiency property
based on risk rates of convergence, studied in Section 3.3 of Carvalho et al. (2010), does not
extend to the grouped situation.

Our main results are laid out in Sections 2–3. The topic of Section 4 is thresholding, which is
concerned with practical data-based rules for deciding whether or not a coefficient parameter
in a Bayesian model is set to zero. In this section we also investigate use of the Grouped
Horseshoe distribution for Bayesian generalized additive model selection as considered by
the authors in He & Wand (2024). Our conclusions are summarized in Section 5. An online
supplement provides full derivations of all results.
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1.1 Notation

For a logical proposition P we let I(P) = 1 if P is true and I(P) = 0 if P is false. The Euclidean
norm of column vector a is denoted by kak ⌘

p
aTa. If v is a random vector then p(v) denotes

the density function of v. If f is a smooth function that maps Rd to R then rxf(x) denotes the
d⇥ 1 vector of partial derivatives of f(x) with respect to the entries of x.

2 Density Function Explicit Form

Section 2.2 of Xu et al. (2016) introduced the grouped horseshoe model. The underlying dis-
tribution, which we call the Grouped Horseshoe distribution, corresponds to setting � = ⌧ =
G = 1 and s1 = d in equation (6) of Xu et al. (2016). This leads to the d ⇥ 1 random vector x
having a (standard) Grouped Horseshoe distribution if and only if

x|� ⇠ N(0,�2Id) where p(�) =
2I(� > 0)

⇡(1 + �2)
. (1)

Let E⌫ denote the generalized exponential integral function, given by

E⌫(x) ⌘
Z 1

1
exp(�xt)/t⌫ dt, x, ⌫ 2 R

(e.g. 8.19.3 of Olver et al. 2023).

Result 1. Let x be a d⇥1 random vector having a Grouped Horseshoe distribution as defined according
to (1). Then the density function of x, denoted by pHS,d(x), is

pHS,d(x) =
�
�
1
2(d+ 1)

�
p
2⇡d+2

exp
�
kxk2/2

�
E(d+1)/2

�
kxk2/2

�.
kxkd�1

, x 2 Rd
.

A derivation of Result 1 is given in Section S.1 of the supplement.
A simple consequence of Result 1 is

pHS,1(x) =
1p
2⇡3

exp
�
x
2
/2
�
E1

�
x
2
/2
�
, x 2 R.

which matches an expression given in the appendix of Carvalho et al. (2010) for the ordinary
Horseshoe distribution. For d = 2 we have

pHS,2(x1, x2) =
1

2
p
2⇡3

exp
�
(x21 + x

2
2)/2

�
E3/2

�
(x21 + x

2
2)/2

�.q
x21 + x22, (x1, x2) 2 R2

.

which is displayed in Figure 1. It is apparent from Figure 1 that pHS,2 has a pole at the origin.
We formalise this behaviour for general d 2 N in Section 3.1.

3 Statistical Properties

We now investigate various statistical properties of the Grouped Horseshoe distribution. A
particular focus is Bayesian statistical inference where a parameter vector has a Grouped
Horseshoe prior.

3.1 Pole at the Origin Existence

In Carvalho et al. (2010), pHS,1 is shown to have a pole at the origin. This is shown to provide
some inferential advantages when pHS,1 is used as a prior density function. Result 2, which is
derived in Section S.2 of the online supplement, shows that the Grouped Horseshoe density
function has a pole at the origin for any dimension.

Result 2. For each d 2 N, lim
x!0

pHS,d(x) = 1.
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Figure 1: Perspective plot of the bivariate Grouped Horseshoe density function: pHS,2.

3.2 Score Function and Tail Robustness

Consider the model

y|✓ ⇠ N(✓, Id) with prior p(✓) = pHS,d

�
✓/⌧

��
⌧
d (2)

for some ⌧ > 0 that is fixed and known. In their Section 2, Carvalho et al. (2010) consider the
d = 1 version of (2) and prove that the score function

d log{p(y)}
dy

converges to 0 as |y| ! 1. (3)

As argued there, (3) implies a type of robustness to large signals which Carvalho et al. (2010)
refer to as tail robustness. Result 3, which is proven in Section S.3, shows that grouped horse-
shoe priors also possesses this property.

Result 3. For model (2), the tail behaviour of the score function is given by

ry log{p(y)} ⇠ �(d+ 1)y

kyk2 for kyk � 1.

Consequently
lim

kyk!1
ry log{p(y)} = 0 and E

��y � E(✓|y)
��  b⌧

for some b⌧ < 1 that depends on ⌧ .

3.3 Risk Convergence Rates

Consider the model

y1, . . . ,yn|✓ independently distributed as N(✓,�2Id) with prior p(✓) = pHS,d

�
✓
�
. (4)

Suppose that the true sampling distribution of the yi is N(✓0,�2Id). In the d = 1 case, Theorem
4 of of Carvalho et al. (2010) states rates of convergence results for the so-called Cesàro-average
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risk of the Bayes estimator of ✓, which they denote by Rn. The rates differ depending on
whether ✓0 = 0 or ✓0 6= 0 where ✓

0 is the value of ✓ according to the sampling distribution of
the yi. The horseshoe prior is shown to lead to a super-efficient risk rate when ✓

0 = 0.
We now provide a Grouped Horseshoe distribution extension of Theorem 4 of Carvalho

et al. (2010). The risk quantity Rn has a definition analogous to that given in Section 3.3 of
Carvalho et al. (2010) for the d-variate extension of the set-up treated there.

Result 4. Consider model (4) and suppose that the yi have sampling distribution N(✓0,�2Id). Let Rn

be Cesàro-average risk of the Bayes estimator of ✓. When ✓0 = 0 we have

Rn 

8
>><

>>:

log(n)

2n
� log{log(n)}

n
+O

✓
1

n

◆
if d = 1,

log(n)

2n
+O

✓
1

n

◆
if d � 2.

When ✓0 6= 0 we have Rn  d log(n)/(2n) +O(1/n) for all d 2 N.

Section S.4 provides the full derivational details of Result 4. For d = 1 and ✓0 = 0, super-
efficiency corresponds to presence of the � log{log(n)}/n term in the upper bound on Rn.
Result 4 shows that this term only arises in the d = 1 case. The Bayes estimator is not super-
efficient for d � 2.

4 Thresholding

Consider a Bayesian model that contains specifications of the form

✓|�✓ has density function pHS,d(✓/�✓)
�
�
d
✓ where ✓ is d⇥ 1. (5)

From results in Section 2, specification (5) is equivalent to

✓|�✓,� ⇠ N(0,�2
✓�

2Id), p(�) =
2I(� > 0)

⇡(1 + �2)
(6)

The introduction of the auxiliary variable � is important for the upcoming approach to thresh-
olding. In the scalar case, Carvalho et al. (2010) develop a thresholding approach for deciding
between

✓ = 0 and ✓ 6= 0, ✓ 2 R.

In this section we describe and evaluate the extension of their approach to deciding between

✓ = 0 and ✓ 6= 0, ✓ 2 Rd
.

The Carvalho et al. (2010) approach involves the following result concerning a simple
“side” model:

Result 5. For the Bayesian model

y| ⇠ N( , ⌧21 Id),  |� ⇠ N
�
0,�2

⌧
2
2 Id

�
, p(�) =

2I(� > 0)

⇡(1 + �2)
, ⌧1, ⌧2 > 0 fixed (7)

the posterior mean of  is

E( |y) = E

 
�
2
⌧
2
2

⌧21 + �2⌧22

�����y
!

y.
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A derivation of Result 5 is given in Section S.5.
For general Bayesian models containing (5) or, equivalently, (6) forms Result 5 suggests the

following rule:

decide that ✓ = 0 if and only if E(�GHS|y) < 1
2 where �GHS ⌘

�
2
�
2
✓

�2
" + �2�2

✓

. (8)

To better understand the efficacy of (8), we ran a simulation study similar to that in Section 4
of our recent article, He & Wand (2024), on generalized additive model selection. The study
involved the Bayesian generalized additive model given by equation (9) in He & Wand (2024)
where d� is the number of candidate predictors that may have a zero or linear effect and d• is
the number of candidate predictors that may have a zero, linear or non-linear effect. The study
involved both the set-up in He & Wand (2024), with the Laplace-Zero and Grouped Lasso-
Zero priors that are used in that article, and an alternative version with the likelihood taking
the form

y|�0,�,u1, . . . ,ud• ,�
2
" ⇠ N

0

@1n�0 +X� +
d•X

j=1

Zjuj ,�
2
"In

1

A

where � is a (d� + d•) ⇥ 1 vector of linear effects coefficients and, for each 1  j  d•, uj is a
Kj ⇥ 1 vector of spline coefficients for the jth non-linear effect. Section 2 of He & Wand (2024)
contains fuller details, including the definition of the spline basis Zj matrices.

Let �j denote the jth entry of �. Rather than imposing Laplace-Zero distributions on the
�j , as conveyed by equation (6) of He & Wand (2024), we instead consider the independent
scalar Horseshoe specifications

p(�j |��) = pHS,1(�j/��)
�
�� , 1  j  d� + d•. (9)

Similarly, rather than imposing a Grouped Lasso-Zero distribution on uj , as conveyed by
equation (7) of He & Wand (2024), we instead consider the independent Grouped Horseshoe
prior specifications

p(uj |�uj ) = pHS,Kj
(uj/�uj )

.
�
Kj
uj , 1  j  d•. (10)

Note that (9) has the auxiliary variable representation

�j |�� ,��j
ind.⇠ N(0,�2

���j), p(��j) =
2I(��j > 0)

⇡(1 + �2
�j)

, 1  j  d� + d•,

where ind.⇠ denotes “independently distributed as”. Similarly, (10) has the auxiliary variable
representation

uj |�uj ,�uj
ind.⇠ N

�
0,�2

uj�ujIKj

�
, p(�uj) =

2I(�uj > 0)

⇡(1 + �2
uj)

, 1  j  d•.

From (8), the (Grouped) Horseshoe analogues of He & Wand (2024)’s ��j and �uj are

��j ,HS ⌘
�
2
�j
�
2
�

�2
" + �2

�j
�2
�

and �uj ,GHS ⌘
�
2
uj�

2
uj

�2
" + �2

uj�
2
uj

.

Therefore, for the d• predictors that can have a zero, linear or non-linear effect the classification
rule that arises from (8) is

the effect is zero if max
�
E(��j ,HS|y), E(�uj ,GHS|y)

 
 1

2 ,

the effect is linear if E(��j ,HS|y) > 1
2 and E(�uj ,GHS|y)  1

2 ,

otherwise the effect is non-linear.

(11)
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Figure 2: The results of linear effect versus non-linear effect classification for six replications of the
simulation study described in Section 4 of He & Wand (2024) with n = 500 and �" = 2. The blue
symbols correspond to the Markov chain Monte Carlo-approximate E(�uj ,GHS|y) values for 21  j 
30, which are the predictors that are simulated to have linear effects (left of the vertical dashed line) or
non-linear effects (right of the vertical dashed line). A blue circle indicates correct classification using
(11), whilst a blue cross indicates misclassification. The red symbols are similar, but for the E(�uj |y)
statistics corresponding to strategy described in Section 3.5.2 of He & Wand (2024). The classification
border of 1

2 is shown by the horizontal purple line.

Note that this rule is analogous to the ⌧ = 1
2 rule given in Section 3.5.2 of He & Wand (2024) for

Laplace-Zero and Grouped Lasso-Zero priors, with ��j ,HS and �uj ,GHS instead of their ��j and
�uj .

Figure 2 shows the approximate, based on Markov chain Monte Carlo sampling, values of
E(�uj ,GHS|y) and E(�uj |y) for six replications of the simulation study described in Section 4 of
He & Wand (2024) with n = 500 and �" = 2. The data are simulated so that the effect of the jth
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predictor is
zero for j 2 {1, 2, . . . , 10},
linear for j 2 {11, 12, . . . , 20} and
non-linear for j 2 {21, 22, . . . , 30}.

(12)

The horizontal axis corresponds to j = 11, 12, . . . , 30, which is concerned with linear versus
non-linear classification. Correct classifications are shown as circles and incorrect classifica-
tions are shown as crosses. For these replications, use of the Grouped Lasso-Zero prior results
in a misclassification rate of 12/120 = 10%. For the Grouped Horseshoe prior the misclassi-
fication rate is 47/120 = 39.2%, which is about four times worse. We see from Figure 2 that
most of the Grouped Lasso-Zero threshold statistics are close to 1 when the true effect is non-
linear and close to 0 when the true effect is linear. In contrast, most of the Grouped Horseshoe
threshold statistics are close to 1 when the true effect is non-linear, but scattered between 0.4
and 0.8 when the true effect is linear. This last-mentioned behavior means that many predic-
tors that have a linear effect are misclassified as having a non-linear effect when the Grouped
Horseshoe prior is used.

Figure 3 differs from Figure 2 in that the sample size is quadrupled to n = 2, 000 and the
error standard deviation is decreased to �" = 0.25. This should make linear versus non-linear
classification much easier and use of the Grouped Lasso-Zero prior leads to perfect perfor-
mance for these six replications. However, for the Grouped Horseshoe prior the more favor-
able conditions do not seem to help and the threshold statistics are still scattered between 0.4
and 0.8 when the true effect is linear, leading to a 49/120 = 40.8% misclassification rate.

We experimented with a possible remedy to the poor performance of thresholding the
E(�uj ,GHS|y) statistics at 1

2 . This involved applying k-means clustering (e.g. MacQueen, 1967) to
the E(�uj ,GHS|y) observations, with the number of clusters fixed at 2. The function kmeans()
within the R computing environment (R Core Team, 2024) was used to obtain the two clus-
ters and corresponding classification rule. As an example, for the analysis correponding to
replication 1 of Figure 3, the k-means threshold is 0.8031. The results from use of this k-means
alternative to the Figure 3 analyses are shown in Figure 4. The misclassification rate drops to
13/120 = 10.83%.

This experimental k-means approach to thresholding for generalized additive model se-
lection has some promise, but relies on situations where there are many candidate predictors
of various effect types. If there are only 3–6 candidate predictors, say, such that most of them
have strongly non-linear effects then k-means threshold choice may not be viable.

Figures 2–4 are based on only six replications. They also omit the zero versus linear/non-
linear classifications based on the E(��j ,HS|y) statistics and their Laplace-Zero counterparts,
which has similar results regarding Horseshoe versus Laplace-Zero priors. To get a more
complete picture, we ran an adaptation of the simulation study described in Section 4 of
He & Wand (2024). The data were generated in exactly the same manner as there, with 30
candidate predictors having “true” effects as described by (12), the sample size ranging over
n 2 {500, 1000, 2000} and the error standard deviation ranging over �" 2 {0.25, 0.5, 1, 2}.

The side-by-side boxplots in Figure 5 facilitate comparison of

A. the Laplace-Zero/Grouped Lasso-Zero prior approach of He & Wand (2024) with the
classification border set to 1

2 ,

B. use of the rule (11) involving (Grouped) Horseshoe priors, the E(��j ,HS|y) and E(�uj ,GHS|y)
threshold statistics and also with the classification border set to 1

2 ,

C. the same as B., but with the classification border based on k-means clustering.

We see that A. is clearly superior to B. Also, C. offers a big improvement on B., but does not
perform as well as A. In the He & Wand (2024) Bayesian generalized additive model selection
setting use of (Grouped) Horseshoe priors does not compete very well with use of Laplace-
Zero/Grouped Lasso-Zero priors.
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Figure 3: Similar to Figure 2 but with a lower sample size, n = 2, 000, and a higher error standard
deviation, �" = 0.25.

5 Conclusions

In this article we have conducted a thorough investigation into the statistical properties of the
Grouped Horseshoe distribution. We have shown that most of the properties possessed by
the univariate Horseshoe distribution extend to the grouped situation. Our investigation was
motivated by our interest in Bayesian generalized additive model selection, as described in
our recent He & Wand (2024) article. The numerical studies in Section 4, concerned with using
Result 5 to carry out generalized additive model selection with (Grouped) Horseshoe priors,
reveal some performance concerns compared with a spike-and-slab benchmark. Perhaps this
research can lead to the development of better selection rules based on (Grouped) Horseshoe
priors.
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Figure 4: Similar to Figure 3 but with the thresholding of the Grouped Horseshoe E(�uj ,GHS|y) statistics
based on k-means clustering. For each replication, the horizontal blue line shows the classification border
arising from k-means clustering. The horizontal red line at 1

2 is the threshold for the Grouped Lasso-
Zero statistics.
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Figure 5: Side-by-side boxplots of the misclassification rates for the comparative performance simulation
study described in the text in the case of the response variable being Gaussian. Each panel corresponds to
a different combination of sample size and error standard deviation. Within each panel, the side-by-side
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