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1 Principal Functions

The principal functions in SemiParSemiParSemiParare

spm() obtain semiparametric model fit
summary() summarise the fit numerically
plot() display the fit graphically
predict() obtain fitted values (and standard errors)

over a specified region of the predictor space

The function that most resembles spm() is gam(), for fitting generalised ad-
ditive models. The gam() function has been available in the S-PLUS language
for many years and has recently become available in R via the package gammain-
tained by Trevor Hastie.

When the SemiParSemiParSemiParproject started in the late 1990s the main motivation was to
add some features not possessed by gam(). Table 1 summarises the advantages
and disadvantages of spm() when compared with gam().

Table 1: Summary of
comparison between
spm() and gam().

Advantages of spm() over gam()

Degrees of freedom may be estimated from data via REML
Likelihood ratio tests are more readily performed.
A bivariate term may be included in the model.
REML-based random intercepts may included in the model.
An spm() fit object involving a bivariate
term can be plotted using plot().
Derivative plots are supported by plot().

Advantages of gam() over spm()

Time-tested, with most glitches ironed out.
Current spm() does not support overdispersion.
Faster, although spm() speed is quite reasonable.
Currently there is no data argument in spm().

In more recent years the R package mgcv has emerged; maintained by Simon
N. Wood. It also has a function named gam() which does have some of the
features not possessed by the original gam(). For example, it does allow for
freedom to be estimated from data via generalised cross-validation (GCV).

Another R package lmeSplines has similarities with SemiParSemiParSemiPar in that it takes
advantage of the mixed model representation of spline-based smoothers. The R
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package fields for spatial data analysis also has some common ground with
SemiParSemiParSemiPar .

2 Single Predictor Models

Consider the univariate scatterplot smoothing (or nonparametric regression) setting

yi = f(xi) + εi

where the (xi, yi) , 1 6 i 6 n , are the scatterplot data, εi are zero mean random
variables with variance σ2

ε and f(x) = E(y|x) is a smooth function.
In SemiParSemiParSemiPar f is estimated using penalised spline smoothing. Penalised spline

smoothers come in a number of forms (e.g. Eilers and Marx, 1996; Ruppert and
Carroll, 2000). The spm() default are based on radial basis functions, and may be
viewed as a generalisation of smoothing splines (French, Kammann and Wand,
2001). The underlying model for f(x) is the mixed model

f(x) =
m−1∑
j=0

βjx
j +

K∑
k=1

uk|x− κk|2m−1, m = 1, 2, 3, . . . (1)

with

u ≡ [u1, . . . , uK ]T ∼ N(0, σ2
u ΩΩΩ−1/2(ΩΩΩ−1/2)T ), ΩΩΩ ≡ [|κk − κk′ |2m−1

16k,k′6K

]. (2)

The mixed model representation of penalised spline smoothers allows for au-
tomatic fitting using the R linear mixed model function lme(). Smoothing pa-
rameter selection can be done via restricted maximum likelihood (REML) and
f̂(x) can be obtained via estimated best linear unbiased prediction (EBLUP) (e.g.
Robinson, 1991).

This class of penalised spline smoothers may also be expressed as

f̂ = C(CTC + λ2m−1D)−1CTy (3)

where λ ≡ σ2
u/σ2

ε is a so-called smoothing parameter,

C ≡ [1 xi . . . x
m−1
i |xi − κk|2m−1

16k6K

]16i6n, and D ≡
[

02×2 02×K

0K×2 (ΩΩΩ1/2)T ΩΩΩ1/2

]
.

2.1 Automatic scatterplot smoothing

We shall first consider automatic scatterplot smoothing of the fossil data collected
by Bralower et al.(1997) and analysed by Chaudhuri and Marron (1999). The data
consists of 106 measurements of ratios of strontium isotopes found in fossil shells
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Figure 1: Plot of the
fossil data.
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and their age and are displayed in Figure 1. These data are stored in the data
frame fossil in SemiParSemiParSemiPar .

We can perform automatic scatterplot smoothing of these data in SemiParSemiParSemiParby
specifying

data(fossil)
attach(fossil)

fit <- spm(strontium.ratio˜f(age))

The object fit is an R list containing several pieces of information on the fit.
Details are given in Appendix A.

A summary of the fit may be obtained using the function summary():

summary(fit)

This results in the output:

Summary for non-linear components:

df spar knots
f(age) 12.14 2.929 25

Note this includes 1 df for the intercept.

The fit can be plotted as using:
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plot(fit)

This leads to the plot in Figure 2.

Figure 2: Result of
plot(fit) for the
default fit of (2).
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The fit with non-shaded standard error bands can be obtained by specifying
plot(fit,shade=FALSE)

This leads to the plot in Figure 3.

Figure 3: Result of
plot(fit,shade=FALSE)
for the default fit of (3).
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To plot without standard error bands we specify:
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plot(fit,se=FALSE)

and this leads to the plot in Figure 4.

Figure 4: Result of
plot(fit,se=FALSE)
for the default fit of (2).
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2.2 User specified amount of smoothing

The parameter λ in equation (3) is called the smoothing parameter and if unspec-
ified, is estimated by restricted maximum likelihood (REML) using certain con-
nections between penalised splines and linear mixed models. Details are given in
Ruppert, Wand and Carroll (2003) (Chapters 4-5) and Wand (2003). This section
illustrates how to override some of the default specifications in SemiParSemiParSemiPar . For
instance, to fit a penalised spline regression to the fossil data with a smoothing
parameter of 3, we fit:

fit <- spm(strontium.ratio˜f(age,spar=3))

However, a more meaningful measure of the amount of smoothing is the degrees
of freedom (e.g. Hastie and Tibshirani, 1990). The number of degrees of freedom
corresponding to the REML choice of smoothing parameter for the fossil data is
about 12. To fit a penalised spline regression to the fossil data with 21 degrees of
freedom, we use:

fit <- spm(strontium.ratio˜f(age,df=21))

This leads to the plot in Figure 5.
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Figure 5: Result of
plot(fit) for the 21
degrees of freedom fit
to the fossil data.
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2.3 User specified basis functions

As noted above, the default basis functions correspond to the cubic thin plate
splines

f(x) = β0 + β1x +
K∑

k=1

uk|x− κk|3.

Another alternative, supported by SemiParSemiParSemiPar , is the truncated polynomial basis
functions. These involve f being modelled as a function of the form

f(x) = β0 + β1x + . . . + βpx
p +

K∑
k=1

uk(x− κk)
p
+ (4)

Specification of a truncated polynomial basis is done as follows:

fit <- spm(strontium.ratio˜f(age,basis="trunc.poly"))

For radial basis functions the default degree is 3 (cubic), while it is 1 (lin-
ear) for truncated polynomials. Basis functions of other degrees can be specified
using the degree argument as follows:

fit <- spm(strontium.ratio˜f(age,degree=5))

For truncated polynomial basis functions degree corresponds to the power p

in (4). For thin plate spline basis functions degree corresponds to the degree of
the radial basis functions, i.e. the degree is 2m− 1 in the notation of (1).

Note that the appropriate multiplier in equation (3) for truncated polynomial
bases functions of degree p is λ2p where λ is the smoothing parameter.
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Finally, the default choice for knot locations is

κk =
(

k + 1
K + 2

)
th sample location of the unique x′is, k = 1, . . . ,K

where K = max(n
4 , 20) . User-specified knots are also supported in SemiParSemiParSemiPar , or

instance, by specifying:

knots.fossil <- seq(95,120,length=11)
fit <- spm(strontium.ratio˜f(age,knots=knots.fossil))

It should be noted here that SemiParSemiParSemiPardoes not currently allow use of the “=” sign
inside the spm() formula specification. For example,

fit <- spm(strontium.ratio˜f(age,knots=seq(95,120,length=11))

is not allowable.

2.4 Derivative plots

Better insights into the presence of peaks and valleys in a penalised spline fit can
be obtained by looking at a plot of the estimated derivative. Suppose one wants
to obtain plots of the first two derivatives of the estimated means for the fossil
data. First fit the data with a high degree fit (derivate estimates benefit from
smoother fits):

fit <- spm(strontium.ratio˜f(age,degree=5))

Derivative plots are obtained as follows:

par(mfrow=c(2,1))
plot(fit,drv=1)
plot(fit,drv=2)

and leads to Figure 6.

2.5 User specified plotting parameters

When applied to an spm() fit object, additional arguments in plot() function
can be used to set various plotting specifications. Some examples are:

• Specify the axis labels:

plot(fit,xlab="Age of fossils",ylab="Strontium ratio of fossils")

• Specify axis limits:

plot(fit,xlim=c(100,120))

• Specify some of the line types and widths:

plot(fit,lty=4,shade=FALSE,se.lwd=4)
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Figure 6: Plots of first
and second derivatives
for fossil data.
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• Specify colours of the lines and shading:

plot(fit,col="red",shade.col="cyan")

The fit in Figure 7 illustrates the result of tweaking several plotting options.
The commands that produced this plot are:

op <- par(bg="white")
par(bg="honeydew")
plot(fit,ylim=range(strontium.ratio),col="green",

lwd=5,shade.col="mediumpurple1",rug.col="blue")
points(age,strontium.ratio,col="orange",pch=16)
par(op)

Appendix B provides fuller details on plotting parameters.

2.6 Predictions

Predictions for general regions of the predictor space may be made using the
predict() function. An example for the default fit to the fossil data is:

newdata.age <- data.frame(age=c(90,100,110,120,130))
preds <- predict(fit,newdata=newdata.age,se=TRUE)
print(preds)

which yields the list:

$fit
[1] 0.7072402 0.7074086 0.7073363 0.7074190 0.7073856
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Figure 7: Plot of fit to
the fossil data with
several plotting
parameters tweaked
away from their
defaults.
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$se
[1] 4.352286e-05 1.241221e-05 6.764213e-06 8.208272e-06 1.818117e-04

The first component of the list are predictions at the specified age values. The
second component are corresponding standard errors. The newdata argument
should be a data frame with names identical to those of the predictor variables.

2.7 Parametric models

Ordinary parametric regression models can be fit using spm(). We will illustrate
this using the data set fuel.frame. First we need to make the data available:

data(fuel.frame)
attach(fuel.frame)

The straight line regression model

E(Fuel) = β0 + β1Weight

may be fit using

fit <- spm(Fuel˜Weight)

whereas the intercept-only model may be fit using

fit <- spm(Fuel˜1)
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3 Simple Semiparametric Models

This section considers fitting of simple semiparametric models; i.e. regression
models with a non-parametric component in one predictor and a parametric
component in another predictor. We shall illustrate fitting such models in SemiParSemiParSemiPar
using a data set on yield of onions in two locations in South Australia (Ratkowsky,
1983; Young and Bowman, 1995). The data are part of SemiParSemiParSemiParand are stored in
the object onions.

Make data available to current session:

data(onions)
attach(onions)
log.yield <- log(yield)

The simple semiparametric regression model

E(log.yieldi) = β locationi + f(densi)

may be fit using spm() as follows:

fit <- spm(log.yield˜location+f(dens))

A summary of the fit may be obtained using the function summary():

summary(fit)

This results in the output:

Summary for linear components:

coef se ratio p-value
intercept 5.3880 0.24230 22.24 0
location -0.3325 0.02388 -13.92 0

Summary for non-linear components:

df spar knots
f(dens) 4.213 63.02 17

Also, the commands

par(mfrow=c(1,2))
plot(fit,jitter.rug=TRUE)
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Figure 8: Plot of simple
semiparametric fit to
the onions data.
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lead to the plots in Figure 8.
Default basis and smoothing specifications for the nonparametric component

can be overridden by user specified options just as for the case of scatterplot
smoothing.

4 Additive models

Additive models are an extension of simple semiparametric models that allow
for several predictors to have a nonparametric smooth functional form. We will
illustrate the fitting of additive models in SemiParSemiParSemiParusing data on atmospheric
ozone concentration and meteorology in the Los Angeles basin. See Breiman and
Friedman (1985) for details. The response is daily ozone concentration (ozone.level)
and the predictors are:

daggett.pressure.gradient pressure gradient at Daggett in mmHg
inversion.base.height inversion base height, in feet
inversion.base.temp inversion based temperature, in degrees Fahrenheit

In SemiParSemiParSemiPar these data are stored in the data frame calif.air.poll.
Make data available to current session:

data(calif.air.poll)
attach(calif.air.poll)

The additive model

E(ozone.leveli) = f1(daggett.pressure.gradienti) + f2(inversion.base.heighti)
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+f3(inversion.base.tempi)

may be fit using the command:

fit <- spm(ozone.level ˜ f(daggett.pressure.gradient)+
f(inversion.base.height) +
f(inversion.base.temp))

A summary of the fit can be obtained by using the summary function:

summary(fit)

This results in the following output:

Summary for non-linear components:
df spar knots

f(daggett.pressure.gradient) 4.697 88.80 31
f(inversion.base.height) 4.198 2741.00 39

f(inversion.base.temp) 3.248 57.98 38

For a display of the additive components, we specify:

par(mfrow=c(2,2))
plot(fit)

This results in the plot in Figure 9.

Figure 9: Result of
plot(fit) for the fit
to the Californian air
pollution data.
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Plots from additive model fits may be customised using the additional argu-
ments in the call to plot() in spm(). The following example provides illustra-
tion:
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par(mfrow=c(2,2))
op <- par(bg="white")
par(bg="darkseagreen")
plot(fit,shade=FALSE,col=c("red","orange","gold"),

lwd=rep(5,3),se.lwd=rep(3,3),
se.col=c("greenyellow","blue","purple"),
rug.col=c("navy","deeppink","darkorange"),
xlim=list(lower=c(-50,0,30),upper=c(80,4200,90)),
xlab=c("Daggett pressure gradient","Inversion base height",

"Inversion based temperature"),
ylab=rep("Contribution to mean ozone level",3))

par(op)

The resulting plot is shown in Figure 10.

Figure 10: Result when
customised example of
plot() is used to
display the fit to the
Californian air
pollution data.
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The user can also specify knots and degrees of freedom values. For degrees
of freedom this needs to be done via the adf (approximate degrees of freedom)
argument. An example is:

fit <- spm(ozone.level ˜ f(daggett.pressure.gradient,adf=6)+
f(inversion.base.height,adf=4) +
f(inversion.base.temp,adf=9))

Note that only approximate degrees of freedom can be pre-specified for additive
models since it is very computationally expensive to find smoothing parameters
that give an exact pre-specified degrees of freedom. The approximation is based
on individual univariate fits. Also, the intercept is not included in the approxi-
mate degrees of freedom — so the total approximate degrees of freedom of the
above model is 1+6+4+9=20.
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5 Additive mixed models

The mixed model representation of penalised splines allows for a seamless fu-
sion of random effects models for longitudinal data and smoothing. The simplest
such model is the additive mixed model, and is supported by SemiParSemiParSemiPar . For illus-
tration we shall use data on the growth of Sitka spruces displayed in Figure 1.3
of Diggle, Liang and Zeger (1995). The data consists of growth measurements of
79 trees over two seasons: 54 trees were grown in an ozone-enriched atmosphere
while the remaining 25 comprise a control group.

A useful additive mixed model for these data is:

log(size)ij = Ui + β ozonei + f(daysij) + εij , 1 6 j 6 ni, 1 6 i 6 m (5)

where
Ui

ind.∼ N(0, σ2
u)

are random intercepts for each tree and the εij are random errors.
First, we make data available to current session:
data(sitka)
attach(sitka)

We then obtain a fit of (5) with REML choice of degrees of freedom for f and
REML estimation of σ2

u :
fit <- spm(log.size˜ozone+f(days),random=˜1,group=id.num)

To view the summary of the fit:
summary(fit)

This leads to the following output:

Summary for linear components:

coef se ratio p-value
intercept 8.4230 0.1743 48.340 0.0000
ozone -0.3006 0.1493 -2.013 0.0444

Summary for non-linear components:

df spar knots
f(days) 2.998 97.9 2

Summary for random intercept component:
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df
random intercept 76.35

We can plot the fit as before:

par(mfrow=c(1,2))
plot(fit)

The result is shown in Figure 11.

Figure 11: Result of
plot(fit) for the
default fit of (5).
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6 Bivariate smoothing

One of SemiParSemiParSemiPar ’s more attractive features is its handling of the bivariate smooth-
ing problem. As shown in Section 7 SemiParSemiParSemiParalso allows for bivariate smooths to
be incorporated into additive models.

In this section we consider the situation where data are available on a re-
sponse y and bivariate predictor x ∈ R2 and we want to fit

yi = f(xi) + εi (6)

where f is a smooth bivariate function. In many applications xi represents
a geographical location, but may also represent two continuous predictors for
which additivity is not reasonably assumed.
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Estimation of f in (6) is done by using radial basis functions approximation;
with the family of basis functions corresponding to the thin plate spline family
as summarised by Wahba (1990) and Nychka (2000). In the notation given there
the case m = 1 corresponds to

f(x) = β0 + βββT
1 x +

K∑
k=1

uk‖x− κκκk‖2 log ‖x− κκκk‖. (7)

Here κκκ 1, . . . , κκκK ∈ R2 are a set of knots that “cover” the space of the xi . De-
fault knots in SemiParSemiParSemiParare selected using the clara algorithm of Kaufman and
Rousseeuw (1990). This is available in the R package cluster.

We shall use data on the location of scallop catches in the Atlantic continen-
tal shelf off Long Island, New York, USA, to illustrate bivariate smoothing (e.g.
Ecker and Heltshe, 1994). These data are stored in the scallop data frame in
SemiParSemiParSemiPar .

Suppose that the data are made available to the current session as follows:

data(scallop)
attach(scallop)
log.catch <- log(tot.catch+1)

Then a fit with default knot and degrees of freedom is obtained via:

fit <- spm(log.catch˜f(longitude,latitude))

When default knot choice is specified a figure showing knot location is sent to the
screen. This is to help ensure that the default knots do a good job of ‘filling up
the space’ of the biviariate predictor data. Figure 12 shows these default knots
for the scallop data. Here it is seen that the default knots fill the space quite
satisfactorily.

To view an image of the fitted values, we specify:

plot(fit)

With this command the user will be prompted to specify a polygonal bound-
ary — the region for which pixels in the image plot are switched on. It is gener-
ally recommended that the boundary corresponds roughly to the region of high-
est density of the bivariate data. For a boundary chosen to correspond to the
longitude/latitude data the plot in Figure (13) results. A summary of the bivari-
ate fit can be viewed as before, by specifying:

summary(fit)

This leads to the following output:

Summary for non-linear components:

df spar knots
f(longitude,latitude) 25.12 0.2904 37

16



Figure 12: Default
knots for the scallop
data.
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Figure 13: Result of
plot(fit) for the
default fit of (6).
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If either the knots or boundary polygon are not specified then the user is
prompted to save this information in a file. This is advisable for data sets that will
be re-analysed since knot choice and boundary specification is time-consuming.
Suppose that the knots are saved to the file scallop.knots and the boundary
polygon vertices are saved to the file scallop.bdry. Then Figure 13 can be
re-produced using the commands:

scp.knots <- read.table("scallop.knots")
scp.bdry <- read.table("scallop.bdry")
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fit <- spm(log.catch˜f(longitude,latitude,knots=scp.knots))
plot(fit,bdry=scp.bdry,image.zlab="log(catch+1)")

As before, the parameter λ in equation (3) is called the smoothing parameter
and if unspecified, it is estimated by Restricted Maximum Likelihood using con-
nections between penalised splines and linear mixed models. To fit a penalised
spline regression to the scallop data with a smoothing parameter of 3, we fit:

fit <- spm(log.catch˜f(longitude,latitude,spar=3))

The REML degrees of freedom corresponding to the REML choice of smoothing
parameter for the scallop data was 9.7. To fit a penalised spline regression to the
scallop data with say, 35 degrees of freedom in the predictor, we fit:

fit <- spm(log.catch˜f(longitude,latitude, adf=35))

This leads to the plot in Figure 14.

Figure 14: Result of
plot(fit) for a 35
degrees of freedom fit
to the scallop data.
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If the bivariate knots are not specified then, as mentioned above, default
knots are chosen using a the clara algorithm. The default number of knots is

K = max{10,min(50, round(n/4))}.

Depending on the value of n and K , the knot selection algorithm can be quite
slow. Therefore it is recommended that these be saved to a file and, for future
analyses of the same data, the knots be inputted in the call to spm().
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7 Geoadditive models

Geoadditive models are described in Kammann and Wand (2003). We will pro-
vide illustration via the copper data from Clark and Harper (2000). They consist
of measurements on the grade of copper from a simulation based on a stockpile
of mined material in the former Soviet Union. Each grade measurement is ac-
companied by a three-dimensional location vector; denoted (xcoord, ycoord, zcoord) .
The natural full model for these data is the three-dimensional smoothing model

gradei = f(xcoord, ycoordi, zcoordi) + εi.

For the purpose of illustrating geoadditive models we will fit

gradei = f1(xcoordi, ycoordi) + f2(zcoordi) + εi. (8)

First make the copper data available to the current session:

data(copper)
attach(copper)

Bivariate knot choice here is a little delicate since the default number of knots
is possibly too low. Therefore we will get the bivariate knot selection out of the
way and save them in a file:

copper.knots <- default.knots.2D(xcoord,ycoord,num.knots=20)

While we’re at it, do the same for the boundary file (needed for effective plotting
of the bivariate surface fit):

copper.bdry <- default.bdry(xcoord,ycoord)
write(t(copper.bdry),"copper.bdry",ncol=2)

Default knot selection is inadequate for zcoord, due to the small number of
unique values of this variable. Therefore, specify knots for zcoord:

knots.z <- seq(80,120,by=5)

Fit (8) with REML choice of degrees of freedom and omission of cases with a
missing grade value:

copper.knots <- read.table("copper.knots")
fit <- spm(grade˜f(xcoord,ycoord,knots=copper.knots)

+f(zcoord,knots=knots.z),omit.missing=TRUE)

View the summary of the fit:

summary(fit)

The following output results:
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Summary for non-linear components:

df spar knots
f(zcoord) 5.384 19.3 9

f(xcoord,ycoord) 12.690 325.4 20

The high number of degrees of freedom in each shows that REML has chosen
a non-linear zcoordeffect and non-linear surface for (xcoord, ycoord) as well.

Finally, we display the fit graphically. Here we will choose a finer mesh for
the image plot and position the legend near the lower left corner:

copper.bdry <- read.table("copper.bdry")
par(mfrow=c(1,1))
plot(fit,bdry=copper.bdry,image.grid.size=c(100,100),

leg.loc=c(300,300))

The result is shown in Figure 15.

8 Generalised responses

The current release of SemiParSemiParSemiParaccommodates binary and count response data
via the binomial and Poisson models, respectively, with canonical link functions.
For example, if the data are (xi, yi) , 1 6 i 6 n , where yi ∈ {0, 1} is binary then
model

P (yi = 1|xi) =
exp{f(xi)}

1 + exp{f(xi)}
, (9)

with f(x) having a basis function expansion such as (1) and random effects sub-
ject to (2), is allowable. If no smoothing parameter or degrees of freedom value
is included then the smoothing parameters are chosen using penalised likelihood
via the function glmmPQL() from the MASS package.

We will illustrate the fitting of this model for data on trade union membership
(1=member, 0=non-member) and wages; part of the dataset trade.union in
SemiParSemiParSemiPar . These data are displayed in Figure 16.
The data can be fitted using:

data(trade.union)
attach(trade.union)
union.member <- union.member[-171]
wage <- wage[-171]
fit <- spm(union.member˜f(wage),family="binomial")

A plot of the result can be obtained using

plot(fit)
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Figure 15: Result of
plot(fit) for the
default fit of (8).
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The result is shown in Figure 17.

The vertical axis corresponds to the estimate of f(x) on the inverse link scale.
In the binary response case this is

logit{f̂(x)} ≡ log[f̂(x)/{1− f̂(x)}].

Embellishments to the plot can be made through the advice given in Section 2.5.

Each of the more complicated semiparametric regression models described
in Sections 3 to 7 can also be fit for generalised responses provided that the user
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Figure 16: A binary
response regression
data set with presence
of trade union
membership versus
wage from the data set
trade.union.
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Figure 17: Result of
plot(fit) applied to
fit of model (9) for the
union membership and
wage.
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specify the amount of smoothing. For example, the generalised additive model

logit{P (union.membership = 1|wage, years.educ, age, female, white, south)}
= β0 + f1(wage) + f2(years.educ) + f3(age) + β4 female + β5 white + β6 south

can be fit (to the data with high leverage observation 171 omitted) using:

age <- age[-171]
years.educ <- years.educ[-171]
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female <- female[-171]
race <- race[-171]
white <- as.numeric(race==3)
south <- south[-171]

knots.years.educ <- seq(6.5,17.5,by=1)
fit <- spm(union.member˜f(wage)+f(years.educ,knots=knots.years.educ)

+f(age)+female+white+south,family="binomial")

The fit shown in Figure 18 is a result of the commands:

summary(fit)

Summary for linear components:

coef se ratio p-value
intercept -0.8545 0.8355 -1.023 0.3066
female -0.7027 0.2653 -2.649 0.0082
white -0.7185 0.2958 -2.429 0.0153
south -0.5373 0.2926 -1.837 0.0665

Summary for non-linear components:

df spar knots
f(wage) 2.661 16.59 38
f(years.educ) 1.006 124.90 12
f(age) 1.001 808.80 10

The above output indicates that the effects of years.educ and age are fairly
linear so a more appropriate (simpler) model is obtained through the command:

fit <- spm(union.member˜f(wage)+years.educ+age+female
+white+south,family="binomial")

par(mfrow=c(3,2))
plot(fit,jitter.rug=TRUE)
summary(fit)

This has summary:

Summary for linear components:

coef se ratio p-value
intercept -0.85560 0.83540 -1.024 0.3058
years.educ -0.08196 0.05068 -1.617 0.1060
age 0.01829 0.01101 1.661 0.0969
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female -0.70260 0.26530 -2.648 0.0081
white -0.71830 0.29580 -2.428 0.0152
south -0.53730 0.29260 -1.836 0.0664

Summary for non-linear components:

df spar knots
f(wage) 2.661 16.59 38

showing that each of the linear variables are statistically significant to varying
degrees.

The plot in Figure 18 is obtained via the command

plot(fit,jitter.rug=TRUE)

Figure 18: Plots for the
generalised model with
wage non-linear but all
other variables linear.
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Appendix A: Details on spm() objects

The fit object returned by spm() is a list with three components:

[1] "fit" "info" "aux"

For the default value of family the object fit$fit has the same structure as
objects from the lme() function in the nlme package. For family set to either
"binomial" or "poisson" then fit$fit has the same structure as objects
from the glmmPQL() function in the MASS package.

The object fit$aux is a list containing estimated covariance matrices of the
fixed and random effects ($cov.mat). It also contains estimated variances of the
random effects ($random.var) and residual errors ($resid.var). The list also
contains approximate degrees of freedom for each additive component ($df) and
the overall degrees of freedom for the fit ($df.fit).

The object fit$info is a list containing information about the model set-up:
e.g. design matrices, knots, type of basis functions and polynomial degree.

The names() function can be used to examine all compnents and sub-components
of fit.

Appendix B: Details on Plot Parameters

Table 2 describe all plotting parameters and their default values for calls to plot()
on an spm() fit object.

For models with several curves many of the parameters in Table 2 can be
specified for each curve. For example, if there are four curves in the spm() object
fit then a possible specification is:

plot(fit,lty=c(1,3,5,6),lwd=rep(3,4))

Appendix C: Trouble Shooting

Due to resource limitations SemiParSemiParSemiPardoes not have as many safeguards as pro-
fessional software packages. Below we list some tips for avoiding “crashes” in
calls to spm().

• If the default value of family is used then the methodology is based on
an approximate assumption of Gaussianity of the response variable. If this
assumption is heavily violated (e.g. gross outliers, strong skewness) then
the fitting algorithm could be adversely affected. Outliers should be treated
with caution and removed if justifiable. Transformations for strongly skewed
response variables are worth considering.
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Table 2: Details on plot
parameters for spm()
fit objects.

parameter description default (for all curves)
plot.it flag for plotting curve estimate TRUE
drv order of derivative to plot 0
se flag for adding pointwise TRUE

±2 std. err. bands
shade flag for using shading in std. err. bands TRUE
bty type of box drawn around plots "l"
main main title of plot ""
xlab x-axis labels variable name
ylab y-axis labels ""
xlim x-axis limits range of x-values
ylim y-axis limits curve vertical ranges
grid.size number of grid points 101
lty line type for curve estimate 1
lwd line width for curve estimate 2
col line colour for curve estimate black
se.lty line type for std. err. bands 2
se.lwd line width for std. err. bands 2
se.col line colour for std. err. bands black
shade.col colour of shaded std. err. bands grey70
rug.col colour of rug representation of x-values black
jitter.rug flag for jittering of rug representation FALSE
zero.line flag for adding zero line to derivative plots TRUE
plot.image flag for image of bivariate surface estimate TRUE
image.col colour vector used in image plot cyan to red
image.bg background of image white
image.bty type of box drawn around image "l"
image.main main title of image ""
image.xlab x-axis label of image x-variable name
image.ylab y-axis label of image y-variable name
image.zlab label for z variable ""
image.xlim x-axis limits of image range of x-values
image.ylim y-axis limits of image range of y-values
image.zlim range of z-values in image range of z-values
image.grid.size two-component array of grid-sizes for image c(64,64)
bdry two-column matrix of polygonal dynamic

boundary for image user-specification
add.legend flag for image legend TRUE
leg.loc location of top-left corner of legend lower left region
leg.dim dimension of legend in x- and y-variable units 30%×10% of plot box
image.zlab.col colour of legend label black

• Only continuous variables should be used as non-linear predictors. In com-
puting terms, a continous variable is one with many non-unique values. If
the variable x has only 4 unique values then the command:

fit <- spm(y f(x))

is prone to error. For predictor variables with moderate numbers of unique
values (around 10), it is worth experimenting with the choice of knots.
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• As with all regression models, predictor values with high leverage; i.e. lying
a long way from the main body of the data, can have an undue influence on
the fit and should be treated cautiously.

• For bivariate fits a graphical check of the knots relative to the bivariate predic-
tors is recommended (this is provided by default.knots()). If the knots
seem too sparse or dense relative to the data then other knot choices should
be considered.

• Be careful to specify the parameters in exactly the correct way. For example,in

fit <- spm(log.catch˜f(longitude,latitude,knots=scp.knots))

it is important that scp.knots is a two-column array. If, instead, scp.knots
was a two-component list then the command would fail.

• Make sure that all variables in the call to spm() actually exist as arrays in the
current session.

• If family is specified to be "binomial" or "poisson" and no smoothing
parameter or degrees of freedom is specified then the function glmmPQL()
from the MASS package is used for fitting. We have experienced mixed suc-
cess with this function. It is prone to crashing more often then lme() as used
for Gaussian response models. Until this problem is resolved you may have
to work with user-specified degrees of freedom values. The function gam()
in the mgcv may also overcome such problems.
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