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S.1 Introduction

The purpose of this supplement is to provide detailed derivational steps for the main results of § 3.3
and further details on our simulation exercise. § S.2-5.5 provide relevant results concerning matrix
algebra and multivariate calculus. In § S.6-5.9 we focus on the scores of the model parameters and
their high-order asymptotic approximations. § S.10 and § S.11 are concerned with approximation of
the Fisher information matrix. The final stages of the derivations of the § 3.3 results are given in § 5.12
and § S.14. § S.15 provides derivational details concerning the sample size illustration described in § 4.
§ S.16 reports some additional simulation results involving confidence intervals for the parameters of
a logistic mixed model.

S.2 Matrix Algebraic Results

The derivation of the results in § 3.3 benefits from particular matrix results, which are summarized in
this section.

For each d € N the d? x %d(d + 1) matrix D4 and d? x d? matrix K, are constant matrices containing
zeroes and ones such that

Dgjvech(A) = vec(A) for all symmetric d x d matrices A

and
Kavec(B) = vec(BT) forall d x d matrices B.

Examples are

10 0 1000
010 0010
Dy=14 1 o ad Ke=], 1 o g
00 1 000 1

The D, are called duplication matrices, whilst the K are called commutation matrices. As stated in
§ 2, the Moore-Penrose inverse of D, is DJ = (DID;)~'DY. Chapter 3 of Magnus & Neudecker
(1999) contains several results concerning these families of matrices, a few of which are relevant to the
derivation of (7). For convenience, we list them here.
Theorem 9(c) in Chapter 3 of Magnus & Neudecker (1999) implies that for any d x d matrix A and
d x 1 vector b, we have
Kj(A®b) =b® A. (S.1)

Theorem 12(a) in the same chapter asserts that
KDy = Dy (S.2)
and implies that, for any d x d matrix A4,

D¥vec(A) = DIvec(AT). (S.3)



Also, Theorem 13(b) and Theorem 13(d) provide for a d x d matrix A
DD (A® A)DJT = (A® A)DJT (S.4)
and, assuming that A is invertible,
{(DI(A@ A)Dy} ' = DF (A @ AY)DIT. (S.5)

Lastly, we state two matrix identities that are used in the derivations. For matrices A, B and C such
that ABC is defined, we have

vec(ABC) = (CT @ A)vec(B). (S.6)
For conformable matrices A, B, C and D, we have
(A® B)(C® D) = (AC) ® (BD). (S.7)

S.3 Multivariate Derivative Notation

For f a smooth real-valued function of the d-variate argument = = (x1,...,x4), let V f(z) denote the
d x 1 vector with rth entry df(z)/0z,, V? f(x) denote the d x d matrix with (r, s) entry 6 f(z)/(0z,0x5)
and V3 f(z) denote the d x d x d array with (r, s, t) entry 93 f(z) /(0w 0z5s0¢).

S.4 Three-Term Taylor Series Expansion of Gradient Vectors

Consider f : R? — R. Then, for sufficiently smooth f, the three-term Taylor expansion of
f(z+h) wherex = (x1,...,24) and h = (hq,..., hy)
is
flz+h) )+ Z{Vf )by + 1 ZZ{W ) Yrshehs + . (S.8)

r=1s=1

Now consider a : R? — R and its grachent function Vo : R — RY. If (S.8) is applied to each entry of
(Va)(x + h) then we have

d d d
{(Va) (@)} + > _{V2a(x) by + %Z Z ) Yoot his

{(Va)(z +h)h

Va x +h
{( )( )}d {( }d + Z{VQ }Tdh + QZ Z{VS Tsdhrhs

L r=1s=1 .

From this it is clear that
(Va)(z + h) = (Va)(z) + {(V?a)(z)th + 2{(V3a)(z) bk (") + . ... (S.9)
where the % notation is as defined by (6).

S.5 Higher Order Approximation of Multivariate Integral Ratios

The main tool for approximation of the Fisher information matrix of (3) is higher order Laplace-type
approximation of multivariate integral ratios. Appendix A of Miyata (2004) provides such a result,
which states that for smooth real-valued d-variate functions g, ¢ and A,

Jis g@)elx) expl—nhlx)}de L Fo(a) (V) V()
Joa (@) exp{—nh(z)} dz ne(a)

e[{V2h(a)) ' V2] Vo) VPR Vgh(w*)*{vgh(x*)}‘l]
2n 2n

(S.10)

+0(n~2)



where
x* = argmin h(x).
TER?

S.6 Exact Score Expressions

For 1 < i < m, let py, x, denote the conditional density function, or probability mass function, of Y;
given X;. Then let
Sai = Vg, logpy,x,(Yi|Xi),  Spi = Vg, log py, x, (Yi] Xi)
and
Sci = Vyech(x) 108 py, x, (Yi] Xi)
denote the ith contribution to the scores with respect to each of 54, fg and vech(X). Then it is straight-

forward to show that the exact scores are

o Jrir gia(w)es(u) exp{—nh;(u)} du
i = fRdR CS(”) eXp{—nhi(u)} du ’ (5.11)

fRdR gin(u)cs(u) exp{—nh;(u)} du

o fRdR cs(u) exp{—nh;(u)} du (5.12)
" Jriw gic(w)cs(u) exp{—nh;(u)} d
_ Jrar Gic\u)Cs(u) eXpy—nhi(u wo .
St = e ea(u) oxp{—nhi(u)) du 3 Davee(X ) (S.13)
where

cs(u) =exp(—su’ M), gia(u) =S,

1 &
j=1
gic(u) = ngR(Efl ® X Hvec(uu®)
1 &
and  hi(u) = _%Z {Yiju" Xas; — b((Ba +u)" Xagj + B Xpij) } -
=1

An integration by parts step is used to obtain the Sy; expression.
In the upcoming sections we obtain asymptotic approximations of Sa; Sg; and Sc;. Key quantities
for these approximations are
Ui = argminh;(u), 1<i<m.
u€RIRR

S.7 Definitions of Key Summation Quantities

Our derivation of (7) involves manipulations of particular summation quantities, which are defined in
this section. At the end of this section we state some important moment-type relationships between
the quantities.



For each 1 < i < m, define Ga;, Gg;, Hanai, Hasi, and Hpp; as follows:

Gai= > {Yij — V' ((Ba + Ui)" Xasj + BE Xeij) } Xaijs
j=1

Gpi = Y _{Yij — V' ((Ba + Ui)" Xaij + B8 Xeij) } Xbij
j=1

n;
Hani = Zb’/((ﬁA + U  Xaij + ﬁgXsz)XAingij,
=

n;
HaBi = Zb”((BA + U)X iy + /BgXBij)XAingij
=1

n;
and Hpp; = Zb//((ﬁA + U)X iy + /BgXBij)XBing;j'
j=1

In a similar vein, define 7/, , 5, to be the di x di x di array with (r, s, t) entry equal to

me((ﬁA + U Xaij + B8 Xpi) (Xaij)r (Xaij)s(Xaij)t
j=1

and H/, op; to be the dr x di x dj array with (r, s, t) entry equal to

me((ﬁA + U Xaij + B8 Xbij) (Xaij)r(Xai)s(Xnij )¢
=1

where
dy = dp — di.

The following relationships are of fundamental importance for the derivation of (7):
E(GailXi,U;) =0, E(Ggi|X;,U;) =0, (5.14)
E(G21Xi,Us) = ¢Hani,  E(GaiGh|Xi, Ui) = ¢MHapi and  E(G57|X;,Us) = ¢Hes: .

where, throughout this supplement,

v®? = v’ for any column vector v.

Also note that
Gai = Op(n1/2)1dRa Opi = Op(nl/Q)ldBv Hani = Op(n)lé@;,

Hepi = Op(n) 157, Hasi = Op(n)lag 15,

and that all entries of 7/ 5 »; and H', s; are Op(n).
S.8 Approximation of U/
Use of (5.10) to approximate Sa;, Sp; and Sc; requires approximation of U;. Introduce the notation

Ci(u) = noh;(u). Then U} satisfies
VCi(UF) =0



where

VCi(u) = —Z{Y;j — b/((/gA 4 'LL)TXAij + ﬁgXBij)}XAij.
=1

Then, from (5.9) we have
=VCi(U;) + {V2Ci(Ui)}(Ui* - Uy)
+3AVCU) } *{(UF = U)(UF —U)" Y+ ...

Next we seek explicit expressions for V2C;(u) and V3C;(u). Standard vector calculus arguments lead
to

V2Ci(u) = Zb”((ﬁA +u)" Xasj + Bg Xnij) Xaij XAy
=1

- |:Zb”((ﬁA +u)" Xas; + B Xsij) (Xaij)r(Xaij)s
=1

1<r,s<dgr

Then, the three-dimension array of all third order partial derivatives of C;(u) is

V3C;i(u) = |:me((/6A +u) " Xaij + BE Xpij) (Xais)r(Xaij)s(Xaij)
=1

1<r,s,t<dg

We then have
VCi(UF) = =Gai + Hani(U; = Us) + s Hpaa k(U7 = U)(UF = U)"} + ...
and so VC;(U}) = 0 is equivalent to
HxhGni = (U = Ui) + $Hah [Haanck A (U7 = U(U; = U)TY] + ... (5.15)

We now invert (S.15) using the set-up given around equations (9.43) and (9.44) of Pace & Salvan (1997).
To match the notation given there, set

Yy = HXLQAZ and z = Uz'* - Ui.

Then, in keeping with the displayed equation just before (9.43) of Pace & Salvan (1997) and using their
superscript and subscript conventions, we have

y® =theathentryofy and 2” = the ath entry of x.

Also,
2" = 2"2° = the (, s) entry of 2z = the (, 5) entry of (U} — U;)®?.
Then
yr=a+ Ara 4.
where

i

Ag 2" = the ath entry of JH A, [Haan k(U7 = U)(U; — U)T}

= the ath entry of %H;;i{HgAAi*(me) }



From equations (9.43) and (9.44) of Pace & Salvan (1997),
=y - ALy 4.

=y* — the ath entry of %Hgii{H/AAAi*(ny)} +...

®2
=y® — the ath entry of %H;};i{HfAAAi*<H;}A,¢QAi> } +....
This results in the following three-term approximation of U;*:

Ui =U;+ HX}«ZQAZ‘ - %/nglxz'{%IAAAi* (Hg}xigAig/{iHK}si)} + Op(”_3/2)1dr<- (5.16)

S.9 Score Asymptotic Approximation

We are now ready to obtain approximations of the scores Sa;, Sp; and Sc; with accuracies that are
sufficient for the two-term asymptotic covariance matrices of (7).

S$.9.1 Approximation of Sy;

For each 1 <r < dy, let e, denote the dy x 1 vector having rth entry equal to 1 and zeroes elsewhere.

S.9.1.1 The (S.10) First Term Contribution

For each 1 < r < d, the contribution to the rth entry of Sa; from the first term on the right-hand side
of (5.10) is the rth entry of ~1U}. In view of (S.16) we obtain the following contribution to Sx;:

EilUi + EilHXi&igAi - %2717'[;/1@{%fAAAi*(HX}AigAiggiHX}M)} + Op(nfg/Z)ldR-

S.9.1.2 The (S.10) Second Term Contribution

Noting that
V{elga(u)} =el'x™ and Ves(u) = —cs(u)X ™ u,

the contribution to the rth entry of Sy; from the second term on the right-hand side of (S.10) is

—1
—gel'nt {Zb”((ﬂA + U X + B XBZ»j)XAZ-jXLj} »lur. (S.17)

j=1
Substitution of (S.16) into (S.17) then leads to the following contribution to Sa;:

— ST VH L ST 4 O (03P 1,

S$.9.1.3 The (S.10) Third Term Contribution

Noting that V2{el'g,,(u)} = O, the contribution to Sa; from the third term on the right-hand side of
(S.10) is 0.

S.9.1.4 The (5.10) Fourth Term Contribution

Via arguments similar to those given in § 5.9.1.2, the contribution to Sa; from the fourth term on the
right-hand side of (5.10) is

Gy _ .
55 A (Haaak Mk ) + Opln /)1y

6



S$.9.1.5 The Resultant Score Approximation
On combining the results of § S.9.1.1-5.9.1.4, we obtain

_ 1 .. _ _
Sai=X"1U; + 7 My 0 Gai — 52 1HA11xz'{foAAz‘*(HAzlxigAiggiHA}Ai)}

om0~ D0, (M kL) + Oy )L

§.9.2 Approximation of Sg;

(S.18)

For each 1 < r < dg, let e, denote the d; x 1 vector having rth entry equal to 1 and zeroes elsewhere.

S.9.2.1 The (S.10) First Term Contribution

The contribution to Sg; from the first term on the right-hand side of (5.10) is
ng U* ZXBU {}/;/] ( /BA + U*)TXAZ] + 6B XBZJ)}

Next note that, with (5.16) as a basis,
V' ((Ba + U5 Xaij + Bg Xeij)
=0 ((Ba + Us)" Xaij + BE Xpij)
+ X1 (UF = UV ((Ba + Ui)" Xaij + Bg Xaij)
1 N _
5 XA (U7 = Un)*2 X aigb" ((Ba + Un)" Xaij + B3 Xpij) + Op(n~*?)
= b/((ﬁA + Ui)TXAz'j + 5gXBij)
_ 1,_ _ _
+X§ij |:HA11§igAi - §/HAii{,H2%AAi*(%AzlkigAigzi%A}%i) }]

xb" ((Ba + Ui)" Xaij + B8 Xpij)

1 - 2 -
+§X£¢j (HA};igAz) Xaijb" ((Ba + Ui)" Xasj + BE Xpij) + Op(n=3/2).

Substitution of this result into (S.19) leads to the first term of Sg; equalling

21¢%£BZ-H;& {Hamnk (Hak a0k ) |

_21¢ {HfAABi* (HZ}MQMQKZ-H;}AZ.) } + Op(”fl/Q)ldR-

; (gBi - Hng‘HE\z‘gAi) +

S.9.2.2 The (S.10) Second Term Contribution
Noting that

Vielg.s(u =——Zb” (Ba +u) Xaij + B8 Xbij) el Xaij Xa;;

(S.19)

(S.20)



and recalling that Vg (u) = —cs(u) S~ 1u, the contribution from the second term on the right-hand side
of (5.10) to Sg; is

T
{Zb”((ﬁA + U Xaj + B8 Xbij) Xai X }

j=1
7 -t
X {Zbﬂ((ﬁA + U Xaij + 5%Xsij)XAin§¢j} DR
j=1
Substitution of (S.16) then leads to the contribution to Sg; from the second term of (S.10) equalling

/HiBi/HX}%iE_lUi + Op(”_1/2>1dr<-

S.9.2.3 The (S.10) Third Term Contribution
The rth entry of the contribution to Sg; from the third term of (5.10) is

dp dp

o D> (Vg U] PP} ],

s=1 t=1

M\%

dy ds
ZZ [V {er 95U} ;,(Hani) o + Op(n 1),

However, the (s, t) entry of V2{el g,5(U;)} is

1
_525,,((& + Ui)TXAij + BgXBij) (BZXAij)(erAij)(erBij) =
j=1

1
% (HaaBi) ot
Noting (6), the contribution to Sg; from the third term of (S.10) is
1 _ _
—§HZAB1*7'[A}M + Op(n 1/2)1dR‘

S.9.2.4 The (S.10) Fourth Term Contribution

With the aid of (5.20), the contribution to Sg; from the fourth term of (5.10) is

' T
271l</){Zb’,((ﬁAJrUi*)TXAij+BBTXBij)XAinsTij} {V2ha(U)} T [VPha(U7 )% AV2hi(UF)} ]
j=1

1 _ _ _
ngBiHAii </HZAAA1‘*HA11M) + Op(n )14,

$.9.2.5 The Resultant Score Approximation

On combining each of the contributions, we obtain
1 _ -
Spi = P (ng‘ - AB@HAAngZ> + 2 ¢HAB1HAA1{HAAA1* <HA}AigAig1{i%A11\i> }
3 ¢ {HAABz* (%AAigAigAi AAi) } + HapiHani 2 Ui (8.21)

1 - - —
— Hhns R Hah + 5 Wik (HaaakHah) + Opln )1,



S$.9.3 Approximation of S¢;

Foreachl < r < %dR(dR + 1) let e, denote the di(dg + 1)/2 x 1 vector with 1 in the rth position and
zeroes elsewhere.

S.9.3.1 The (S.10) First Term Contribution
Foreachl <r < %alR(alR + 1), the rth entry of the contribution to Sc; from the first term of (S.10) is

1
e 9ic(U]) = 5e; Dgp (B @ 27 H)vee((U)?).
Since
®2
(Ui*)®2 = [Ui + /H;,i\igAi - %HK}«i{/HfAAAi*(Hg}xigAigLHKi\i)} + Op(”_3/2)1d1<
= U7 + UiGhiHpn; + HanOailUl + HapGaidaHan;
T
_%Ui{HfAAAi* (HX}AZQAZ'Q;@HX}M) } ,H;ii
_%nglki{H;%AAi* <HX/1MQAZ'Q/{@'HX}M> }UzT + Op(”_3/2)1§R2’
and noting (5.3) and (5.6), the contribution to Sc; from the first term of (5.10) is
1 _ _ _ _
_Hg}xi{HZAAfz*(HX/lxz‘gAigrApz%Z/lm) }Uﬂ 271) + Op(n73/2>1dR(dR+1)/2'
S.9.3.2 The (5.10) Second Term Contribution
Noting that, for each 1 < r < dg(dz +1)/2,

Vi gio(w)]” = %eZDdTR(z—l 9T Y wel) + (o) (8.22)

and keeping in mind that Vcg(u) = —cg(u)X~tu, the contribution from the second term on the right-
hand side of (5.10) to Sc; is

‘ngTR(E*1 X U o)+ U)}

-1
n;
X {Zb//((ﬁA + Ui*)TXAZ'j + /BgXBij)XAingij} ZflUZ-*
j=1

¢ _ _ ow _
:—§D§R(z Lo S ™) (Ui @ 1)+ (I @ Uy) yHan X Ui + Op(n 3/2)1dR(dR+1)/2

= —(;SDgRVeC (Zfl/HZ}MZflUZ‘UiT271> + Op(n73/2)1dR(dR+1)/2'
The last step makes use of (5.1), (5.3) and (S.6).

S.9.3.3 The (S.10) Third Term Contribution

The derivation of the (S.10) third term contribution to Sc; benefits from notation and a result concern-
ing the inverse of the vec operator. For d € N, if bis a d? x 1 vector then vec™!(b) is the d x d matrix
such that vec(vec™*(b)) = b.



Lemmal. Letd € N, a bea d x 1 vector and b be a d? x 1 vector. Then

(e’ @ I)b=vec  (b)a and (I®a’)b=vec () a.

Lemma 1 is a relatively simple consequence of (5.6). To prove the first part of Lemma 1, note that its
right-hand side is

vec ! (b)a = vec(vec ! (b)a) = vec(Ivec* (b)a) = (a’ ® I)vec(vec (b)) = (a” ® I)b.

The proof of the second part of Lemma 1 is similar.

Foreach1l <r < %dR(dR + 1), the rth entry of the contribution to S¢; from the third term of (S.10) is
1
ot {V2hi(U)} Vel g0 (UD)}] -
Next note from (5.22) that
1 _ _

d{erTgic(u)} = ieTTDgR(E legx 1){(u @I+ (I® u)}du

Using Lemma 1 we then have

2d*{el g, (u)} = e,,TDZ,ﬂR(Zfl S W (dua )+ (I du) }du
_ [{(z*l @ NDgeer} (due D)+ {(E @S ) Dge, ) (I ® du)} du
T

= (du)” [Vec_1 ((E_l ® E_I)DdRer> + vec™! ((E_1 ® E_l)DdRer> }du.

From the second identification theorem of matrix differential calculus (e.g. Magnus & Neudecker,
1999) we then have

1 1 T
VHelgo(u)} = ivec_1 ((Z_l ® E_l)DdRer> + ivec_1 ((Z_l ® E_l)DdRe,«>

which does not depend on u. Therefore V2gy,(U}) is a symmetric matrix that depends only on %, which
we denote as follows:

Q(Z;r) = %Vec_l ((2—1 ® E_I)DdRer) + %Vec_l ((2—1 ® E_I)DdReT)T,
Now note that
%tr {V2Ri(UD)} V) gic (UD)Y] = tr [{V2RGUT)} Q5 7)]
= o tr [V (U} QE: )] + Opn?)
= Yt (HA Q) + 00 2)

The rth entry of the leading term of the contribution to Sc; from the third term on the right-hand side

10



of (5.10) is

gtr {HanQ(%5m)}
- %vec(?—[g}v)Tvec (Vec_1 <(E_1 ® E_I)DdRer»
+%V6C(HZ}M)TVGC (Vec_l ((Z_l ® Z_l)DdRer>T>

= fvec(zh) vee(vee ! (=7 0 57) Dyger) )
+%VGC(HK11\i)TKdeeC (VeC_l <(E_1 ¥ E_l)DdReT»

- ﬁveC(H;}\i)T(zfl © 1) Dyger + gvec(H;}M)TKdR(Z’l ® B Dyger

— — — - T/ — —
- %VeC(HA}M)T(E '@ S Dyeer + %vee(HA}M) (E7!' @ 7Y Ky Dager

— T/ «— — — T /«— —
:%vec(HA}M) E'ey 1)DdReT+§vec(HA;i) (X' ® S Dyger

¢ T _¢r

=5 Di (57t @ S vec(Han) = Ser Dj vec(S 1157,

Hence, contribution to Sc; from the third term on the right-hand side of (5.10) is
¢ Clg1 e -
ED‘;lrl’ivec (E IHA}ME 1) + Op(n 3/2)1dR(dR+1)/2'

S.9.3.4 The (S.10) Fourth Term Contribution
Foreach1l < r < %al][{(d]R + 1), the rth entry of the contribution to Sc; from the fourth term on the
right-hand side of (5.10) is
1
—5- (VA g ] VR (U)y [V ha(U7 ) (V2 Ra(UF)} 1.
Noting (5.22) and using (S.7), it follows that the contribution to Sc; from the fourth term on the right-
hand side of (5.10) is

1

2 DT @2 TH{(U7 @ 1) + (T UF) H{V hi(UD)} [VPhi (U7 ) %A V2 ha(U7)} ]

— LD oS 4 (5 e (0]

4n
<{V2hi(U7)} 7 [V (U7 ) * Vi (U7 )} ]

] _ _ _ _ _ _ _
= —ZDdTR {E'U) @S+ {7 @ (57U H Han (/HfA.AAi*/HA}&i> + Op(n ™) Ly (1) 2

- _ngTRvec <271{H1§‘1’”’ (HAAAZ'*%;}M) UiT}Eil) + Op<n73/2)1dR(dR+1)/2

where the last step follows from application of (S.3) and (5.6).

11



$.9.3.5 The Resultant Score Approximation
The resultant approximation of Sc; is
Sci = %DngeC<E_l [UiUiT -3+ QHX}Az‘gAZ’UiT + HZ/LQMQZZ%X}M
+¢ng’1§i - 2¢HX}\1271U1'U1‘T
~H i {H,AAAi* (HK}M G gg:iH/K}&J }UzT
—H i, (HZAAZ'*HZ;Z)UZT] 271) + Op(n™3/) g (dgt1) /2

(S.23)

S$.10 Score Outer Product Conditional Moments Approximation

The ith term of the Fisher information matrix of (3, vech(X)) is a 3 x 3 block partitioned matrix with
the blocks corresponding to the various moments of pairwise outer products, conditional on X;. The
relevant approximations involve repeated use of (S.14) and and keeping track of orders of magnitude.

S.10.1 Approximation of E(S$?|X;)
Using (5.18), (5.14) and standard algebraic steps we have
E(S71X:) = %7
+¢S L (Hah; — UUTS 1 HA, — Haa S UUT X ) 5!

., (S5.24)
o5 B{HEA (HaankHiahi ) UT + Ui(Hipak Mok ) Mok Xi bt
+0,(n™)157.
S.10.2 Approximation of E(S§’|X;)
From (5.21) and (5.14) we obtain
1 _
E(S§71X:) = EE(’HBBi - HZBiHA}\iHABi]Xi> + 0p(1)152, (S.25)

S.10.3 Approximation of F(S&?|X;)
After some long-winded, but relatively straightforward, matrix algebra that involves application of

(5.14) we have from (S.23) that

B(SEIX) = 5D (57 @ 57D, + 4D (57 © 5 E[2U07) @ Hal,
+vec(U;UT — B)vec (H;}ME_I{E - UUf — E( fAAAi*HX}Ai) UiT})T (S.26)
+vec (Hg}%iE_l{E - UUF - ECHZXAAi*,HX}%i) UZT}) vec(UiU; — E)T‘XZ}

X(E7' @B Dag + Op(n™)19% 11y o

S.10.4 Approximation of F(Sa;S5;|X;)

Multiplication of (S.18) by the transpose of (S.21), taking expectations conditional on X; and use of
(5.14) leads to

T

E(SaiSg1 Xi) = E_IE{UiUiTE_lHXLHABi - Ui (H:AABZ'*/H;}M) 5.27)
T :

+Ui (H:AAAi*HXi\J %gzlxz'/HABi

XZ} + Op(n_l)ldR 15}3.
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S.10.5 Approximation of F(Sa;SE;|X;)
An important aspect of the E(Sx;SL,;|X;) approximation is that, even though
Sai = Op(1)1g, and  Sc; = Op(1)144(dp+1)/2

we can establish that
E(SaiSE1Xi) = Op(n™ ") lag Ly (g1 /2 (5.28)

which indicates a degree of asymptotic orthogonality between 4 and 3. An illustrative cancellation,
involving the leading terms of each score, is

E{x'Uus N (Ul - 227X Dy, = SO HEWUUT X)) - 2T D, = O.
As will be shown in § S5.12, approximation (S.28) is sufficient for (7).
S.10.6 Approximation of F(Sg;SE|X;)
Multiplication of (5.21) by the transpose of (5.23), and similar arguments, leads to
1 1 e _
E(SpiS&;| Xi) = §E HHXBiHAiiZ Ui — Hiaapik Hp ps
+H i Hani (HfAAAi*HX}\z‘> }VeC(UiUz‘T - E)T)Xz} (2" @271 Dy, (5.29)

+0p(n )14, 1dTR(dR+1)/2'

S.11 The Fisher Information Matrix

The Fisher information matrix of (8, vech(X)) is
My M m
I(B,vech(%)) = [ . 12]

where M =
M, Mo z}

E(S{?|1X:) E(SaiSE|Xi)
E(Sp:Sh:|1Xi) E(S571X:)

7

and M22 = ZE(S?;DQ)

=1

m
MIZEZ

i=1

B(SpiSE;1X:)
E(Sg;iSE | X:)

The results of the previous section lead to high-order asymptotic approximation of the matrix I (3, vech(X)).
In the next section we show that inversion of this approximate Fisher information matrix leads to two-
term covariance matrix approximations for the maximum likelihood estimators.

S.12 Approximation of Covariance Matrices of Estimators
The dominant terms in the approximation of

Cov(8]X) and Cov(vech(Z)[X)
correspond to the di x di and 3dg(dx + 1) X 2dg(dx + 1) diagonal blocks of

I(ﬂ,vech(i]))_l.

We now treat each of these in turn in the upcoming subsections, which make extensive use of block
matrix inversions. If a matrix is partitioned into four blocks A, B, C'and D, then

A B

C D

A '+ A71B(D-CA™'B)"1CcA™Y —A"'B(D—-CA'B)!
—(D-CcA™'B)"lcA™! (D—-CA'B)™!

13



or, equivalently,

A B

- (A— BD~1C0)? —(A— BD"'C)"'BD"!
c D|

—D7'C(A- BD'C)"' D '4+D7'C(A-BD-'C)"'BD!

Another result that is repeatedly used in the following subsections is

[e.9]

Z ATIB)k 4!

k=0

for A and B invertible matrices of the same size and such that the spectral radius of A~!B is less than
1.

S.12.1 Two-Term Approximation of Cov (/3| )

The dominant terms of Cov (E |X) correspond to

the upper left dy x d; block of I(ﬁ,vech(i]))_1 = (M1 — M12M2*21M{[2)_1

Based on (5.24), (S.25) and (5.27) we have
qﬁm

ma~1 — YK LEE+ O p(mn~ )1212 mY s + Op(mn~ )1dR1T
My = mn
mY~ 1IC;{B + Op(mn~t )1dBlgR ?KBB + Op(m)li2

where

n - Tw—1q/—1 — - T -1
]CAA:m;E{UiUi ST g T Haa S UUT — Hia,

Xi}>

+Haa; (HZXAAi*/HX}%OUiT + Ui (HiAAAi*Hg}%JT,Hg}\i
Kas = — Z E{ UUFS " H oo Hasi — Ui (HAABi*Hg}\i)T
X}

T
+Ui (HfAAAi*HX}M) HoniHabi

x)

are matrices with all entries being O,(1). As consequences of (5.26), (5.28) and (S5.29) we have

1 & _
=1

Myt = Op(m™1)1%2 and My = (S.30)

dr(dr+1)/2

Op(m”_l)ldaldTR(dRH)/Q ]
Op(m)ldsldTR(dR+1)/2
Therefore

Mg My M, =

O,)(T)m*Z)IS?R2 Op(mn~ )1dR1T ]
Op(mn=1)1g4, 1§R Op(m )1?;2
From these results for M;; and M 12M231 M ig, it follows that

My — Myg My, M, =
qu

m%! — TS 4 Op(mn= 152 mE " Cup + Op(mn )14, 1%

mn
K + Op(m) 152

mEillCZB + Op(mn~ )ldBlT 5

14



The upper left dx x dx block of (M — My M,' M) 1
-1

1 ¢ - - - -
- E{I B E(KAA + KasKos Kip)Z71 4 Op(n 2)1§R2} =

PN (z)(ICAA"‘l_ICABICB_BlICZB) —1,_—2\1®2
+ + Op(m™'n )ldR'

m mn

The upper right di x d block of (M1 — M12M2—21M17;)‘1 is

mn

Z _1
- {m + Op(m_ln_l)lgf} {mZ_llCAB + Op(mn_l)ldegB} { 5 Kas + Op(m)lgf}

JCas ks
_¢ ;\:TLBB +Op(m_1n_2)1degB'

The lower right ds x d; block of (M — M12M2_21M1T2)_1 is

-1
¢ICBB + Op(m—ln—2)1i2‘

mn
Therefore,
_ —1
C AX _ 1 0 0 10} (K/QA)_I (’CSA) llch
0V(ﬁ| )_E 1) 1) % /CO T/CO -1 ’CO /CO TKO —I]Co
( AB) ( AA) BB+( AB) ( AA) AB

+Op(m_1n_2)1?;2

where, for example, K, is the Kaa quantity with 3 set to (% and ¥ set to X°.

S.12.2 Two-Term Approximation of Cov (Vech(fl) |X)

The dominant terms of Cov (vech(2)|.X) correspond to

the lower right %dR(dR +1) x %dR(dR + 1) block of [(ﬁ,vech(E))*1

= (Mag — MMy, Mys) .

From (5.26)
& T _ M o7 -1 -1 mo p o1 -1 -1 -1
E E(SciSc;| Xi) = 5 DdR(Z ® X7 ) Dy, — — DdR(E QL )Kec(E7" ® X)) Dy

=1
—2\1®2
+Op(mn )1dR(dR+1)/2

with the following O, (1) matrix:

Kee = % i E Evec(z — U;UTvec (H;}Mz—l{z —uul - 2(%;AM*H;}V> U?})T
i=1
—i—%vec (H;}\iz-l{z —uul - E(HgAAi*H;j\i)UZT}) vec(E — U;UT)T

—(UiUiT) ® (HK}M) Xi].
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Next, note that
Op(m™152  Op{(mn) Y141

Op{(mn)*l}ldBldTR Op{(rrm)*l}lg];2

Given the orders of magnitude in (S.30) and (S.31), from expansion of M{, M ;' M it is apparent that
its dominant O, (m/n) contribution is from

m T m -1
{ZE(SBZSEHXD} {ZE(SBz‘SBTAXi)} > E(SpiSEIX0)

=1 =1 =1

-1

= (S.31)

_¢m - -
Dd (E71 @ E ) KscKgy Kinc (B71 @ £71) D + 0p(m/n)17 dR(dR+1)/2

where
1 = 1
’CBC = % Z FE |:{HAB7,HAAZZ U HAABZ*HAAl
=1

+HAB HAAi <H1AAAZ'*H;}M> } ‘X,] vec(UiU] —%)"
is a matrix with all entries being O,(1). Hence, if we let A = 3 D7 ((£°)~' @ (£°)7!) Dy, and

B=DL () @ (2% K% + (K0T (KS) I ()™ @ (2°)71) Dy,

then
a 1 ¢\ 17102
Cov (vech(X)|X) = A— EB + op{(mn) ™ }155%, 1) 0
Ly L aBa {(mn) = 1137
~m mn P dr(dr+1)/2°
From (S.5),

A7l =2D; (2" @) DSt
To simplify A~1BA~1, we use (S.4) and (S.7) to obtain

2D} (2" @ x0)D; T . 49D (K& + (K5) T (K9) Koy DT
m mn (5.32)

+O0p(m™ )15 1y e

Cov(vech(2)|X) =

S$.13 Population Forms of Covariance Matrix Second Terms

In the previous section, the second terms of the asymptotic covariance matrices of 3 and Vech(ﬁ) are
stochastic. However, under relatively mild moment conditions such as assumption (A3) of Jiang et
al. (2022), these terms converge in probability to deterministic population forms. In this section we
determine these limiting forms.

A re-writing of the K., quantity is

1 -1

Kan=— ZE[ UUIS™ (L Han)” + (%HAAi)_lzilUiUiT — (2 Hani)

—I—(%HAAi) - { (%/HZ%AM) *(%HAAi) _1) }UZT

Xl} .

+Ui{ (3 Hasn:) % (3 Han) - }T (Han:) o ‘
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Since
E(EHanl X)) B QuaUs) and  E(LHjanlXi) B Qaa(U)
we have, under relatively mild conditions (see e.g. Lemma Al of Jiang et al., 2022),

E [UiUiTE_lﬂAA(Ui)_l F Qua(U) IS UL — Qun (U2
i=1

1
Kon 5=
m

(V) Quan (V) e ua (U1) ~ JUT
T
FU Upar (U Q0a(U) T} 20 (U) 7]
- JE[UUTZ*%)AA(U)*1 Q) IS UUT — Qi (U)

0 (0) s (0K Qr(©) U + U {2y (0) % Qr @)} a(0) ]

where A,, is as defined in § 3.1. Analogous arguments lead to
P P P 4 r P 1
KAB — AAB) ICBB — E{‘I’G(U)}, ICBC — A and DdRICCCDdR — iE{\IIg(U) - 2\1’8(U)}

where Ug(U), Ug(U) and A, are as defined in § 3.1. It follows that the deterministic forms of the order
(mn)~! terms match those stated in (7).

S.14 The Gaussian Response Special Case

For the Gaussian response special case of (3) the two-term covariance matrix expressions simplify
considerably. The main reason is that, for the Gaussian case, b”(z) = 1 and v"”'(z) = 0. These facts
imply that

Qua(U) = E(XaXR), Qu(U)=EBE(XaXg), Qu(U)=E(XpX3)

and all entries of the three-dimensional arrays (2}, (U) and ), ,,(U) are exactly zero.

S.14.1 The Cov(j3|X) Approximation
For the Gaussian response situation
Aan = BE(XaXD)™Y, A= E(XaAX2) ' E(XAXE)

and
E{Us(U)} = E(XpXg ) — E(XaX5) E(XaXA) 'E(XaAXg).

Therefore,

Ad A Mg
= EB(XXT).

AZ:BAz:Al AZBA;AIAAB + E{‘Ijt‘) (U) }

. XaAXT XaXT
B XpXT  XpXxT

Hence, for the Gaussian special case

0 O
) 0

. S{B(XXT)} 1+ 0,(1)}

Cov(5|X) :%

This result generalises the two-term expansion of Var (B\A|X ) provided in § 3.5 of McCulloch et al.
(2008) for the dy = dz = 1 and Xa = 1 special case.
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S.14.2 The Cov(vech(%)|X) Approximation

As shown in, for example, § 4.3 of Wand (2002) there is exact orthogonality between  and ¥ in the
Gaussian case. This means that A = O and, hence, the second term of Cov (vech(X)|X) is

%E{Vech(il —UUDY Yy (U)F 4 4(U)vech(z — UUTT — 2\118(U)} (S.33)

where ¢4(U) and ¥g(U) simplify to
Pa(U) = D;{vec<{E(XAX,§C)}—1z—1(2 - UUT)>

and
Us(U) = Df [(UUT) @ {E(XaXX)} ] DST.

We immediately have
E{Us(U)} = D} [E@{E(XAX3)} '] DS

The reduction of the other expectations in (5.33) is less immediate and benefits from Theorem 4.3(iv)
of Magnus & Neudecker (1979) as well as (S.2). However, such a pathway leads to

E{vech(z — UUTYbs(U)T + ¢4 (U)vech(S — UUT)T} = 4D} [S© {B(XaXL)} DI

On combining the components of (5.33) we arrive at

2D; (20 @) DyT" . 49D} [20 @ {E(XaAX{)} 1 DET{1 + 0p(1)}
m mn

Cov(vech(2)|X) =

S.15 Derivations for the Sample Size Illustration

We provide supporting calculations for the sample size illustration of Section 4 involving the Poisson-
response mixed model (8). The model has a random intercept and a random slope, dr = dz = 2 and
all the fixed effects are paired with a random effect, and so all the “B” quantities defined in Section
3.1 are null in this case. Therefore, deriving the explicit expression of the lower-right element of A,, is
sufficient for obtaining the two-term asymptotic variance of 3; required for the sample size calculations
of our illustrative example. Notice that A,, depends on Q,,(U), ¥2(U) and ¥7(U), which are defined
in Section 3.1. The vector 1)2(U) itself depends on Q,,(U) and ), (U). In the following we will obtain
the explicit expressions of these quantities for the model under examination.

S.15.1 The Explicit Expression of (,,(U) and its Inverse

First notice that, for a constant ¢,

if Z ~ Bernoulli(p)

S.34
then FE(e!?) = (1—p)+pet and E(Ze'?) = E(Z%'?) = E(Z%e'?) = pel. (539
Making use of (S.34), it follows that for model (8)
0 0 1 X
Uun(U) = E ( exp{8) + Uy + (80 + U)X} Lo
X X
peﬁ(erUl peﬁ(erUl
and the inverse of Q,,(U) has the following explicit expression:
—B3=Uo | p —p
Qua(U) = S —— . 5.35
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S.15.2 The Explicit Expression of ¢, (U)
The vector ¢2(U) depends on Q,,(U) and ,,,(U). The ((1,2), (1,2), 1) slice of 2,,,(U) is

1
[Uaa(D]1,2),0,21 = E (exp{ﬁg + U+ (B) + U)X} [ x 2 U) = Qu(0).
Resorting to (S.34), the ((1,2), (1,2), 2) component of Q,,(U) is
/ 0 0 X X2
[Qaan(D)](1,2),1,2)2 = E | exp{By + Uo + (81 + U1)X} X2 3 U
_ peﬂ8+ﬁ9+Uo+U1 1 1
1 1

The first component of ¢5(U) is then

[2(U)]; = [Qan(D)]1.1,1[Qa(U) 11 4 [Qan (D)]1.21 [Q0a (U) 12
+ [Laa ()21 [2aa(U) 21 + [Qaa (U)]2.2.1[Q2aa(U) 22

1 ptpefitUn opefitth L1 — p+ pefith
B 1—p 1—p 1—p

=2.

The second component of 1)2(U) is

[W2(U)]y = [Uaan(U)]1,1,2[2a(U) 711 + [Qaan (U)]1.2,2[2a (U) 12
+ [ (0)]2,1,2[2a (U) M 21 + [Qaa (U)]2.22[Qaa (U) 22

peﬁ?-l-Ul 2p€ﬂ(1)+U1 peﬁ?-i-Ul
= - +1+ =1.
I—p 1-p I—p
It follows that
2
b= | ] - (5.36)

S.15.3 The (2,2) element of V;(U)

For our scope, only the (2, 2) element of ¥7(U) is needed. Let

(20)—1 —

and notice that

UG(E0)% + UpU (2910 UF(x) 4 UpUy (50)1 .
U7 (U) = 250110 0100 2/v0\11 0401 Qaa(U)™
Ul (E ) + U[)Ul(z ) Ul (2 ) + U()Ul(z )

From replacement of Q,,(U)~! with its explicit expression (S.35) in the previous equation we get that

(U7 (U)l22 Z%[Uf{(zo)” — (20)10) 4+ DUy {(0)°F — (£0)00}]e=#6-Uo
y (5.37)

+ ;{Uf(EO)“ + UpUy (20)01ye A8 -8 ~Uo—Un
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S.15.4 The (2,2) element of A,,
Recall that

A = B{W(U) + 07(0)T = Qu(U)™" + Quu(0) ()07 + Ui (U) T Qun(U) ' }.
Using (S.35), (S.36) and simple algebraic steps, the (2, 2) element of the product Q,,(U)~4o(U)UT is

[2ur (U)o (U)UT],, = zleﬂw?%vl - 1(i1peﬁ8vo_ (5.38)

Combining (5.35), (S.37) and (S.38) together we get that the (2, 2) element of A4, is

e E( o UR(ED)! = (5910 + Tl {(5°)°! = (£°)* e -0

+ 2 {0250V 4 Uyl (30)01 e A0 -Uo-Un _ ;e—ﬁé’—ﬁ?—%-“ (S.39)
p

1 -s8-vo 201 —s0-p0—vo-tn _ 2U1 _gouo )
I1-p p 1—p

Obtaining an explicit form for (S.39) involves computing E(e~"0) and E(e~Y0~U1) with respect to

Uy

[ Yo ] ~ N(0,%9).

Let f2(U;0, 2%) denote the bivariate Normal density function of U = [U U1]T with mean vector 0 and
covariance matrix X°. Using the moment generating function of the Multivariate Normal distribution

we get
0

s 1
E(e7Y) = exp (200> and FE(e %7U1) =exp {2(280 + 259, + 291)} . (S.40)
From (S.39), other quantities that need to be computed to obtain the explicit expression of [A,,]2 2 are
E(Ue%), BE(Ue™), E(UgUre ), E(Ue "0 B(UZe Y1) and E(UgUe Y0~ 1).

For computing these expectations it is useful to work with

2 201 2 o (28)?
Uo|Uy ~ N(N0|1700\1) where pg; = Z—OUl and og; = Xg —
11

and write the joint density of Uy and U; as f>(U;0,X%) = fl(U0|U1;,u0|1,0§‘1)f1(U1;0, ¥9,), where

f1(Z; u,0?) denotes the density function of a random variable Z with a N(u,o?) distribution. Also
notice that

if Z~ N(u,0%) then E(e?)=—p+ %02 and E(Ze %)= (u-— 02)6"2/2_”, (5.41)

and that, for a constant a,

if Z~N(0,0%) then E(Ze %)= —ac®e”?’/?  and E(Z% %) = (a0 + 02)6(1202/2. (S5.42)
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From application of (5.41) and (5.42) we have

E(Ulero) = / Uy / erOfQ(U; 0, EO)dU()dUl

=/ U1f1(U1;0;Z(1)1)/ e~ % f1(Uo|Un; popr» o)1) dU0dU,

= / UL f1 (U5 0,50, e o+ 300 g, (S.43)
1 EO 2 [ee) EO
— exp [2 {ggo _ (2001) H / Uy exp (—ZglU1> FL(U150,50,)dU,
11 —00 11

EO
= %0, exp (200> )

Using similar algebraic steps and by making recursive use of (5.41) and (5.42) we get

_ P

B ) = (2 + Shipewp (S22 (S44)
U 20
E(UgUre ) = (23,29, + 25;) exp <2> , (S.45)
1

B(the U001y = (58, + 59, exp {2@80 cosg + z&ﬁ)} , (5.46)

_Un— 1
E(Ufe %" = {(281)2 +250, 59 + (89))% + 2(1)1)} exp {2(280 + 250, + E(1)1)} (547)

and

Uy 1
EUpUre™ %701y = {5039, + 20050, + 20,59 + (20;)2 + £, } exp {2(280 4239, + 2?1)} . (S.48)

Now notice that (5.39) can be rewritten as [A,]22 = Zle T; with

2 _/BO 9 _60
= T {E) - () B ), = T )" - () °}E(Uolie ),
—p —p
9e—H8—8Y 9e—B5— B
Ty = e o 1(20)11E(U1267U0*U1) T, = e ~o 1(20)01E’(U0U1€*U0*U1),
p p
—B9— 0 50
e o0 1 e ~o
T5 = - 67U07U1 ) TG = - eiUo )
e L B(e)
9e—H3—BY 9¢—b
=X Be ) and Ty = ————E(Ue )
p —
By noticing that

(B9 = {2620 — (200128, (B0 = (3910 = {5529 — (26:)°} =0
and (2°)M = {229, — (28,)*} 20,
and using (5.43)—(5.48) we have that

2 _ _ 3050
= ﬂ{zgoz(l)l — (2002} H{Z00(Z00)? + Z0o X + (561)° + T2 e Fo+¥o0/2, (5.49)
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2 _ _nR0 0
Ty = - 1 _p{zg(,z?l — (2007} H{Z00(Z01)% + (201)% + Z00T0: =% + £, 59 e ot o/2 (S.50)

2

T3 = ={Z5o3%1 — (£00)} " {Z00(X01)? + 2500 Z01 201 + Z00(391)? + T50391 }
p (S.51)

« o8B+ (B2, 430,) /2
2
Ty = —={20o%%1 — (201)*} " {Z00Z0: 211 + 00(Z01)% + (Z01)°Z01 + (Z00)° + (Z01)%}
p (5.52)
675876%(280+2281+2?1)/27
Ty = —2(50, 4 20,)e B0+ (T +25820) 2 4ng 1 = %2816—58”80/2. (5.53)
p -Pp
From application of (5.40),

T5 = —le*ﬁgfﬁghr(280+2281+2(1)1)/2 and T6 = — 1 67ﬁ8+280/2. (854)

p 1—p
The sum of the expressions in (S.49)—(S.54) provides the explicit form of the (2, 2) element of A,,,

Analag = —e 880+ (Sor2mbuesti) 2 1 —shistes (S.55)
P

S.15.5 The Two-Term Asymptotic Variance of 3,

From the explicit form of the (2,2) element of A,, in (5.55) we get the following explicit form for the
two-term asymptotic variance of 8; in model (8):

1 9

— exp {—ﬁg + QOOH .

o, ¢

Asy.Var(B1) = ot e

1 1
[p exp {—68 = Bl + 5 (36 + 255, + E?l)} +

S.16 Application to Confidence Intervals

We conducted a simulation exercise aimed at illustrating the application of second term improvements
to generalized linear mixed model asymptotics to confidence intervals. Data sets were generated from
the dx = 5 and dy = 2 logistic mixed model

}fij ‘Xh‘j, Xgij, X3z'ja X4ij, U0i7 Ulz' independently distributed as
Bernoulli(l/(l + exp[—{BY + Uo; + (BY + U1s) X145 + B9 X2ij + 8 X3i5 + B2X4’L'j}]))7

where the [ gOi ] are independent N (0, X:%) random vectors, 1 <i <m, 1 < j < n.
1i

The “true” parameter values were set to

(89,81, 89, B3, BY) = (0.35,0.96, —0.47,1.06, —1.31) and %=

0.56 —0.34
—-0.34 0.89

and the predictor data were generated from independent Uniform distributions on the unit interval.
The simulation design is such that the asymptotic variance of B, corresponding to the fixed effect of
the X predictor, benefits from second term improvement. The true (Y vector was chosen so that there
was a variety of strengths of predictor fixed effects. We selected the X° matrix to ensure that there
was a significant amount of heterogeneity in the random intercepts and slopes. In our reporting of
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simulation results we use the following standard deviation and correlation parameterisation: ¢¢ =
(292, 09 = (£9,)Y2 and p° = 59, /(6909). To assess potential large sample improvements afforded
by the two-term asymptotic covariance expressions at (7) we varied m over the set {100, 150, ...,500}
and fixed n at m/10. For each (m, n) pair we then simulated 500 replications and obtained approximate
95% confidence intervals for all model parameters according to the approach described in § 4 of Jiang
et al. (2022) and the second term improvements arising from (7). The confidence intervals for oY
and o9 involved the use of asymptotic normality results for logarithms of these parameters, followed
by exponentiation, as outlined in Section S.16.2. Similar remarks apply to p° but with use of tanh™*
and tanh functions. The requisite bivariate integrals were obtained using the function hcubature ()
within the R language package cubature (Balasubramanian et al., 2023). The point estimates, which
were obtained via the R language package gimmTMB (Brooks et al., 2023), use Laplace’s method to

approximate bivariate integrals.
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Figure S.1: Empirical coverage of confidence intervals from the simulation exercise described in the text. Each

panel corresponds to a model parameter that is impacted by second term asymptotic improvements. The adver-

tised coverage level is fixed at 95% and is indicated by a horizontal dotted line in each panel. The solid curves

show, dependent on the number of groups m, the empirical coverage levels for confidence intervals based on each

of the three approaches. The dashed curves correspond to plus and minus two standard errors of the sample
proportions. The within-group sample size, n, is fixed at m/10.

Note that the confidence intervals for 5§, Y and the entries of % differ according to the two asymp-
totic theory approaches since the estimators of these parameters have order m ! asymptotic variances.
The confidence intervals for 39, 35 and ) are unaffected by the second term asymptotic improvements
since their estimators have order (mn)~! asymptotic variances.

Figure S.1 compares the empirical coverages of confidence intervals with advertised levels of 95%
for the one-term asymptotic variances of Jiang et al. (2022) and the two-term asymptotic variances that
arise from (7). In Figure S.1 we only consider the parameters that are affected by second term improve-
ment. The empirical coverages for the other parameters are provided in Figure S.2. For comparison
with existing software products, the empirical coverages for the gimmTMB confidence intervals are
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Figure S.2: Empirical coverage of confidence intervals from the simulation exercise described in the text. Each
panel corresponds to a fixed effect model parameter that is not impacted by second term asymptotic improvements.
The advertised coverage level is fixed at 95% and is indicated by a horizontal dotted line in each panel. The solid
curves show, dependent on the number of groups m, the empirical coverage levels for confidence intervals that use
a one-term asymptotic variance approximation. The dashed curves correspond to plus and minus two standard
errors of the sample proportions. The within-group sample size, n, is fixed at m/10.

also shown in Figure S.1. For {, 3? and o} there is close correspondence between the two-term and
gImmTMB confidence intervals. For 0§ and p° and lower values of m, the two-term confidence inter-
vals are prone to some under-coverage whilst gimmTMB has empirical coverages above the advertised
level.

Figure S.2 compares the empirical coverages of confidence intervals with advertised levels of 95%
for the parameters of (7) that are not affected by second term improvement. The figure shows that
the asymptotic theory variances lead to good coverages for 39, 3§ and 3}, even for lower sample size
situations. They are also quite close to those produced by the gImmTMB package.

It is clear from Figure S.1 that our second term improvements lead to much better coverages for
lower sample size situations. On the other hand, one-term confidence intervals are trivial to com-

pute whilst the two-term versions require a considerable amount of computing involving numerical
integration.

S.16.1 Additional Simulation Results

The simulation exercise described above is necessarily limited and subject to constraints involving, but
not confined to, the values of m and n. Here we report on an extension that involves a different set of
(m, n) pairs that does not fix n to equal m/10. This allows for some understanding of the effect of n on
empirical coverage of confidence intervals.

We extended the simulation exercise to allow for m and n to vary in an unconstrained manner. The
extension involved replacement of the previous sample size design,

(m,n) € {(100,10), (150, 15), (200, 20), (250, 25), (300, 30), (350, 35), (400, 40), (450, 45), (500, 50)},

by
(m,n) € {200,300, 400} x {20,30,40}.

Figure S.3 summarises the empirical coverage values from this additional simulation exercise.

For fixed m, the empirical coverages are seen to improve as n increases for almost all parameters
and m values. However, when n is held fixed then increasing m does not necessarily lead to improve-
ments in empirical coverage. Whilst limited, the simulation results summarised by Figure S.3 suggest
that m and n should increase together to improve empirical coverage. This is in keeping with our
Section 3.2 assumptions.
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It is clear that the one-term asymptotic variance approximation requires much higher sample sizes
to achieve advertised coverage performance. For inference concerning 3] and 3 the empirical cover-
ages from the two-term asymptotic variance approximation and the approach used by the R package
gimmTMB hardly differ. There are some slight differences for inference concerning o, o9 and p°.
For n = 20 the two-term asymptotic variance approach has a tendency to under-cover, whilst the
glImmTMB approach can sometimes over-cover. Some casual checks suggest that the over-coverage of
the gImmTMB approach is due to its confidence intervals being noticeably wider.

S.16.2 Confidence Interval Construction Details
For any u € R%® define

N 1 I ~ N
Qaa(u) = — Z Zb/'((ﬁA +u)T Xaij + 5]§XBz‘j>XAinKij,
=1 j—1

1 m  n; N R
Qup(u) = — Z Zb”((ﬁA + u)T X5 + B{ij)XAingij (S.56)
=1 =1
R 1 m n;

and QBB(U) = % Z Zb”((B\A + U)TXAZ']' + B\EXBij>XBin]%;j-
i=1 j=1

Then the natural studentisation of E{¥s(U)} is

E{ws(U)} = E{QBB(U) -~ QAB(U)TQAA(U)*QAB(U)M}

or S [ (i) - B B Bt o (- ) i

dr

In the last expression of (5.57) integration is applied element-wise to each entry of the matrix inside the
integral. The natural studentisations of

Ay Ass, A, E{U(U)} and E{¥y(U)} (5.58)

are analogous to that for E{Us(U)}. The studentisations for the quantities in (S.58) depend on the
functions defined by (S.56) as well as similar sample counterparts of (2, ,, (U) and 2, ,;(U). Next define

— - _1[% o] 3[ MW vV -
Asy.Cov(p) = — LT - " 559)
mi{i o O T AT A ALA A + E{T6(U)}
and
—= o 2D} (E@S)DiT
Asy.Cov(vech(Y)) = i = ) Dy
*%(2@%([])} —4B{ws(U)} + AT [E{ws(U)}] 'A).

In the general quasi-likelihood situation, the most common choice for ¢ is the method of moments
estimator and is often labelled the Pearson estimator. For ordinary likelihood settings, such as for
Gaussian and Gamma responses, ¢ could instead be the maximum likelihood estimator.

Let (3°)x denote the kth entry of 8°. Then approximate 100(1 — a)% confidence intervals for (3°)
based on (S.59) are

(Be =@ (1— 5a>\/ {As/yc\ov@}kk, 1<k <dy (S.60)
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Figure S.3: Empirical coverage of confidence intervals from the simulation exercise described in Section S.16.1.
Each panel corresponds to a model parameter that is impacted by second term asymptotic improvements. The
advertised coverage level is fixed at 95% and is indicated by a horizontal dotted line in each panel. The solid
curves show the empirical coverage levels for confidence intervals based on each of the three approaches. The
dashed curves correspond to plus and minus two standard errors of the sample proportions.
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The confidence intervals in (S5.60) are analogous to those given in § 4 of Jiang et al. (2022). For 1 <
k < dg, (5.60) provides second term improvements of the Jiang et al. (2022) confidence intervals. For
dr + 1 < k < d; both sets of confidence intervals are identical.

Confidence intervals for the entries of %° have expressions analogous to (S.60). However, with
interpretability in mind, it is common to instead perform inference for the standard deviation and
correlation parameters associated with 3°. In the special case of d; = 2 the parameters are

o) =/29, o8 =4/%% and p°=%,/(0703).

In addition, the reparameterisation
W =log(o1), wd=log(oz) and wf =tanh *(p")

is often used to help counteract the effects of skewness in the sampling distributions of 71, 72 and p,
and ensure that all confidence interval limits are within the relevance parameter spaces. Application
of the Multivariate Delta Method (e.g. Agresti, 2013, Section 16.1.3) leads to

w1
AsyCov | | @ | | = 261,52, 7)" Asy.Cov(vech(S)) Z(61,52, )
W3
where

) a3(1—p?) 0 —pa3
E(01,02,p) = —5—5—5~ 0 0 20109
20705(1 — p?) o ,
0 o1(1=p%) —poi

Routine arguments then lead to confidence intervals for o, 09 and p° based on asymptotic normality
results for (wy, Wy, W3).
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