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SUMMARY

A recent article on generalised linear mixed model asymptotics, Jiang et al. (2022), derived
the rates of convergence for the asymptotic variances of maximum likelihood estimators. If m
denotes the number of groups and n is the average within-group sample size then the asymptotic
variances have orders m−1 and (mn)−1, depending on the parameter. We extend this theory 15

to provide explicit forms of the (mn)−1 second terms of the asymptotically harder-to-estimate
parameters. Improved accuracy of statistical inference and planning are consequences of our
theory.

Some key words: Longitudinal data analysis, Maximum likelihood estimation, Sample size calculations.

1. INTRODUCTION 20

Generalised linear mixed models are a vehicle for regression analysis of grouped data with
non-Gaussian responses such as counts and categorical labels. Until recently, the precise asymp-
totic behaviours of the conditional maximum likelihood estimators were not known for these
models. Jiang et al. (2022) derived leading term asymptotic variances and showed that they have
orders m−1 and (mn)−1, depending on the parameter, where m is the number of groups and n 25

is the average within-group sample size. The main contribution of this article is to extend the
asymptotic variance and covariance approximations to terms in (mn)−1 for all parameters. This
constitutes second term improvement to generalised linear mixed model asymptotics. The poten-
tial statistical payoffs are improved accuracy of confidential intervals, hypothesis tests, sample
size calculations and optimal design. 30

The essence of generalised linear mixed models is the extension of general linear models via
the addition of random effects that allow for the handling of correlations arising from repeated
measures. There are numerous types of random effect structures. The most common is the two-
level nested structure, corresponding to repeated measures within each ofm distinct groups. This
version of generalised linear mixed models, with frequentist inference via maximum likelihood 35

and its quasi-likelihood extension, is our focus here.
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Suppose that a fixed effects parameter in a two-level generalised linear mixed model is ac-
companied by a random effect. Jiang et al. (2022) showed that the variance of its maximum
likelihood estimator, conditional on the predictor data, is asymptotic to C1m

−1 for some deter-
ministic constant C1 that depends on the true model parameter values. The crux of this article40

is to extend the asymptotic variance approximation to C1m
−1 + C2(mn)

−1 for an additional
deterministic constant C2. We derive the explicit form of C2 for two-level nested generalised lin-
ear mixed models for both maximum likelihood and maximum quasi-likelihood situations. Even
though, in general, C2 does not have a succinct form it is still usable in that operations such as
studentisation are straightforward and result in improvements in statistical utility.45

For two-level nested mixed models, (mn)−1 is the best possible rate of convergence for the
asymptotic variance of the estimator of a model parameter. Such a rate is achieved by maxi-
mum likelihood estimators of fixed effects parameters unaccompanied by random effects and
dispersion parameters (e.g. Bhaskaran & Wand, 2023). The current article closes the problem of
obtaining the precise asymptotic forms of the variances, up to terms in (mn)−1, for estimation50

of all model parameters. To achieve this goal, three-dimensional arrays and their combination
with regular matrices play a central role. We introduce a new type of array multiplication that
streamlines the required manipulations.

2. MODEL DESCRIPTION AND MAXIMUM LIKELIHOOD ESTIMATION

Consider the class of two-parameter exponential family of density, or probability mass, func-
tions with generic form

p(y; η, ϕ) = exp[{yη − b(η) + c(y)} /ϕ+ d(y, ϕ)]h(y) (1)

where η is the natural parameter and ϕ > 0 is the dispersion parameter. Examples include
the Gaussian density for which b(x) = 1

2x
2, c(x) = −1

2x
2, d(x1, x2) = −1

2 log(2πx2) and
h(x) = I(x ∈ R) and the Gamma density function for which b(x) = − log(−x), c(x) = log(x),
d(x1, x2) = − log(x1)− log(x2)/x2 − log Γ(1/x2) and h(x) = I(x > 0). Here I(P) = 1 if
the condition P is true and I(P) = 0 if P is false. The Binomial and Poisson probability mass
functions are also special cases of (1) but with ϕ fixed at 1. When (1) is used in regression con-
texts a common modelling extension for count and proportion responses, usually to account for
overdispersion, is to remove the ϕ = 1 restriction and replace it with ϕ > 0. In these circum-
stances

{yη − b(η) + c(y)}/ϕ+ d(y, ϕ) (2)

is labelled a quasi-likelihood function since it is not the logarithm of a probability mass function55

for ϕ ̸= 1. We use the more general quasi-likelihood terminology for the remainder of this article.
Consider, for observations of the random pairs (Xij , Yij), 1 ≤ i ≤ m, 1 ≤ j ≤ ni, generalised

linear mixed models of the form,

Yij |Xij , Ui independent having quasi-likelihood function (2) with natural parameter(
β0 +

[
Ui

0

])T

Xij such that the Ui are independent N(0,Σ0) random vectors.
(3)

The Xij are dF × 1 random vectors corresponding to predictors. The Ui are dR × 1 unobserved
random effects vectors, where dR ≤ dF. Under this set-up the first dR entries of the Xij are part-
nered by a random effect. The remaining entries correspond to predictors that have a fixed effect
only. We assume that the Xij and Ui, for 1 ≤ i ≤ m and 1 ≤ j ≤ ni, are totally independent,60
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with the Xij each having the same distribution as the dF × 1 random vector X and the Ui each
having the same distribution as the dR × 1 random vector U .

For any β (dF × 1) and Σ (dR × dR) that is symmetric and positive definite and conditional on
the Xij data, the quasi-likelihood is

ℓ(β,Σ) =

m∑
i=1

ni∑
j=1

[{Yij(βTXij + c(Yij)}/ϕ+ d(Yij , ϕ)]−
m

2
log |2πΣ|

+

m∑
i=1

log

∫
RdR

exp

[
1

ϕ

ni∑
j=1

{
Yij

[
u
0

]T
Xij − b

((
β +

[
u
0

])T

Xij

)}
− 1

2u
TΣ−1u

]
du.

The maximum quasi-likelihood estimator of (β0,Σ0) is (β̂, Σ̂) = argmaxβ,Σ ℓ(β,Σ). In practice 65

computation of (β̂, Σ̂) can be challenging due to intractable dR-dimensional integrals, although
ongoing advances tend to alleviate this problem. We ignore this aspect here and study the the-
oretical properties of the exact maximum quasi-likelihood estimator rather than approximations
to them.

Suppose that dF > dR and consider the partition β = [βTA βTB ]
T of the fixed effects parameter

vector, where βA is dR × 1 and βB is (dF − dR)× 1. The dF = dR boundary case is such that βB

is null. Also, let X ≡ {Xij : 1 ≤ i ≤ m, 1 ≤ j ≤ ni}. Theorem 1 of Jiang et al. (2022) implies
that, under some mild conditions, the covariance matrices of β̂A, β̂B and vech(Σ̂) have leading
term behaviour given by

Cov
(
β̂A|X

)
=

Σ0{1 + op(1)}
m

, Cov
(
β̂B|X

)
=
ϕΛβB{1 + op(1)}

mn
, (4)

where n ≡ 1
m

∑m
i=1 ni, and

Cov
(
vech(Σ̂)|X

)
=

2D+
dR
(Σ0 ⊗ Σ0)D+T

dR
{1 + op(1)}

m
. (5)

Here ΛβB is a (dF − dR)× (dF − dR) matrix that depends on β and the (X,U) distribution, DdR is 70

the matrix of zeroes and ones such thatDdR vech(A) = vec(A) for all dR × dR symmetric matrices
A and D+

dR
= (DT

dR
DdR)

−1DT
dR

is the Moore-Penrose inverse of DdR . The theory of Jiang et al.
(2022) also indicates a degree of asymptotic orthogonality between βA and βB in that E

{
(β̂A −

β0A)(β̂B − β0B)
T |X

}
has Op{(mn)−1} entries, which implies that the correlations between the

entries of β̂A and β̂B are asymptotically negligible. For Gaussian responses, Lyu & Welsh (2022) 75

considered an extension of (3) for which some entries of Xij are constrained to be constant
across all ni measurements within the ith group. For such constant-within-group predictors they
showed that the asymptotic variances of the corresponding fixed effects parameters are of order
m−1 rather than (mn)−1. This type of extension is worthy of future consideration.

The leading term approximations of the variability in β̂A and vech(Σ̂), given by (4) and (5), 80

are somewhat crude. Unlike the asymptotic covariance of β̂B, they do not show the effect of
the average within-group sample size n. In the next section we investigate their second term
improvements.
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3. TWO-TERM ASYMPTOTIC COVARIANCE RESULTS

We define the two-term asymptotic covariance matrix problem to be the determination of the85

unique deterministic matrices Mβ and MΣ such that, under reasonably mild conditions,

Cov
(
β̂|X

)
=

1

m

[
Σ0 O

O O

]
+
Mβ{1 + op(1)}

mn
and

Cov
(
vech(Σ̂)|X

)
=

2D+
dR
(Σ0 ⊗ Σ0)D+T

dR

m
+
MΣ{1 + op(1)}

mn
.

An example for which a solution to the two-term asymptotic covariance problem can be ex-
pressed relatively simply is the dF = 2, dR = 1 Poisson quasi-likelihood special case of (3), with
parameters β = (β0, β1) and Σ = σ2 and predictor variable [1 X]T for a scalar random variable
X . Define

a1
(
β0, β1, σ

2
)
≡ eβ0+σ2/2

[
E(X2eβ1X)E(eβ1X)− {E(Xeβ1X)}2

]
and

a2(β1, σ
2) ≡

eσ
2
E
(
X2eβ1X

)
E
(
eβ1X

)
+
(
1− eσ

2){E(Xeβ1X
)
}2

E
(
eβ1X

) .

Then the two-term covariance matrix of (β̂0, β̂1) is

Cov

([
β̂0

β̂1

] ∣∣∣∣∣X
)

=
1

m

[
(σ2)0 0

0 0

]
+

ϕ{1 + op(1)}
a1
(
β00 , β

0
1 , (σ

2)0
)
mn

[
a2
(
β01 , (σ

2)0
)
−E
(
Xeβ

0
1X
)

−E
(
Xeβ

0
1X
)

E
(
eβ

0
1X
) ]

.

Studentisation of the two-term asymptotic covariance matrix for obtaining confidence intervals
and Wald hypothesis tests is straightforward. For example, E(X2eβ

0
1X) can be replaced by the

estimator (mn)−1
∑m

i=1

∑ni
j=1X

2
ije

β̂1Xij .
The remainder of this section is concerned with the theoretical problem of obtaining the forms90

of Mβ and MΣ for model (3) in general. The score asymptotic approximation approach used in
Jiang et al. (2022) requires higher numbers of terms to obtain valid two-term covariance matrix
approximations. Some of these terms can only be expressed using three-dimensional arrays rather
than with matrices. Succinct statement ofMβ andMΣ is only possible with well-designed nested
function notation. A novel notation for multiplicative combining of three-dimensional arrays95

with compatible matrices is also beneficial. The next subsection focusses on these notational
aspects.

3.1. Notation for the Main Result
Let A be a d1 × d2 × d3 array and M be a d1 × d2 matrix. Then we let

A⋆M denote the d3 × 1 vector with tth entry given by
d1∑
r=1

d2∑
s=1

(A)rst(M)rs. (6)

Next, for U ∼ N(0,Σ0), define

ΩAA(U) ≡ E
{
b′′
(
(β0A + U)TXA + (β0B)

TXB
)
XAX

T
A |U

}
,

ΩAB(U) ≡ E
{
b′′
(
(β0A + U)TXA + (β0B)

TXB
)
XAX

T
B |U

}
and ΩBB(U) ≡ E

{
b′′
(
(β0A + U)TXA + (β0B)

TXB
)
XBX

T
B |U

}
.
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Also let Ω′
AAA(U) be the dR × dR × dR array with (r, s, t) entry equal to

E
{
b′′′
(
(β0A + U)TXA + (β0B)

TXB
)
(XA)r(XA)s(XA)t|U

}
and Ω′

AAB(U) be the dR × dR × (dF − dR) array with (r, s, t) entry equal to

E
{
b′′′
(
(β0A + U)TXA + (β0B)

TXB
)
(XA)r(XA)s(XB)t

∣∣U}.
Define the random vectors: 100

ψ1(U) ≡ vech(Σ0 − UUT ), ψ2(U) ≡ Ω′
AAA(U)⋆ΩAA(U)−1, ψ3(U) ≡ Ω′

AAB(U)⋆ΩAA(U)−1

and ψ4(U) ≡ D+
dR

vec
(
ΩAA(U)−1(Σ0)−1

{
Σ0 − UUT − Σ0ψ2(U)UT

})
.

Then define the random matrices:

Ψ5(U)≡ΩAA(U)−1ΩAB(U), Ψ6(U) ≡ ΩBB(U)−Ψ5(U)TΩAB(U),

Ψ7(U)≡UUT (Σ0)−1ΩAA(U)−1, Ψ8(U) ≡ D+
dR

[
(UUT )⊗ {ΩAA(U)−1}

]
D+T

dR

and Ψ9(U)≡ψ1(U)ψ4(U)T + ψ4(U)ψ1(U)T .

Lastly, define the expectation matrices:

ΛAA ≡E
{
Ψ7(U) + Ψ7(U)T − ΩAA(U)−1 +ΩAA(U)−1ψ2(U)UT + Uψ2(U)TΩAA(U)−1

}
,

ΛAB ≡E
{
UUT (Σ0)−1Ψ5(U) + Uψ2(U)TΨ5(U)− Uψ3(U)T

}
and

∆≡E
([

Ψ5(U)T
{
(Σ0)−1U + ψ2(U)

}
− ψ3(U)

]
ψ1(U)T

)
.

3.2. Assumptions for the Main Result
The main result depends on the following sample size asymptotic assumptions: the number

of groups m diverges to ∞; the within-group sample sizes ni diverge to ∞ in such a way that 105

ni/n→ Ci for constants 0 < Ci <∞, 1 ≤ i ≤ m; the ratio n/m converges to zero. The last
of these conditions is in keeping with the number of groups being large compared with the
within-group sample sizes, as often arises in practice. For our asymptotics it ensures that, for
the harder-to-estimate parameters, the asymptotic variances of the maximum likelihood estima-
tors have leading terms of the form C1m

−1 + C2(mn)
−1. In addition, it ensures that the Fisher 110

information is sufficiently dominant for obtaining asymptotic variances.
We also assume that the (X,U) joint distribution is such that all required convergence in prob-

ability limits that appear in the deterministic order (mn)−1 terms are justified. The determination
of sufficient conditions on the (X,U) distribution that guarantee the validity of the main result is
a tall order, involving the determination of at least eighteen additional moment-type conditions 115

for results similar to Lemma A1 of Jiang et al. (2022), and beyond the scope of this article.
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3.3. Statement of the Main Result
Using the notation presented in § 3.1 and under the assumptions described in § 3.2, and as-

suming dF > dR we have

Cov
(
β̂|X

)
=

1

m

[
Σ0 O

O O

]
+

ϕ

mn

[
Λ−1

AA Λ−1
AA ΛAB

ΛT
ABΛ

−1
AA ΛT

ABΛ
−1
AA ΛAB + E

{
Ψ6(U)

}
]−1

{1 + op(1)}

and Cov
(
vech(Σ̂)|X

)
=

2D+
dR
(Σ0 ⊗ Σ0)D+T

dR

m

+
ϕ

mn

(
2E
{
Ψ9(U)− 2Ψ8(U)

}
+∆T

[
E{Ψ6(U)}

]−1
∆
)
{1 + op(1)}.

(7)

For the dF = dR boundary case the first term of Cov
(
β̂|X

)
is simply Σ0/m. A supplement to this

article contains a full derivation of (7).
In the Gaussian response special case we have b′′(x) = 1 and b′′′(x) = 0 and the main result

reduces to the following succinct form:

Cov
(
β̂|X

)
=

1

m

[
Σ0 O

O O

]
+
ϕ
{
E(XXT )

}−1{1 + op(1)}
mn

and

Cov
(
vech(Σ̂)|X

)
=

2D+
dR
(Σ0 ⊗ Σ0)D+T

dR

m
+

4ϕD+
dR

[
Σ0 ⊗ {E(XAX

T
A )}−1

]
D+T

dR
{1 + op(1)}

mn
.

We are not aware of any previous appearances of this result in the linear mixed model literature.120

4. UTILITY OF THE SECOND TERM IMPROVEMENTS

The second term improvements of (7) have ready and straightforward applications to confi-
dence intervals, Wald hypothesis tests and sample size calculations. Optimal design is another
possible utility, but would require second term improvements of the type of theory given in §
5 of Jiang et al. (2022). In order to understand potential practical impacts of second term im-125

provements to generalised linear mixed model asymptotics, we present an illustration on sample
size calculations for a Poisson-response mixed model. In the supplement we report results from
simulation exercises involving confidence intervals for the parameters of a logistic regression
model. These assess the improvements afforded by our two-term asymptotic covariance expres-
sions against the theory of Jiang et al. (2022) and also serve as a comparison to existing software.130

Consider the following dF = dR = 2 Poisson quasi-likelihood special case of (3):

Yij |Xij , U0i, U1i, 1 ≤ i ≤ m, 1 ≤ j ≤ n, independently distributed as

Poisson
[
exp

{
β00 + U0i + (β01 + U1i)Xij

}]
where

[
U0i

U1i

]T
are independent N(0,Σ0)

random vectors and the Xij’s are independently drawn from X ∼ Bernoulli(p).

(8)

Suppose the model above is expected to be adopted in a study involvingm subjects. Now suppose
we would like to determine the required number of subjectsm to detect a possibly positive effect
of the binary predictor X at a global level by testing

H0 : β01 = 0 versus H1 : β01 > 0 (9)
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with a significance level α and at least P power. If βa1 > 0 is a particular alternative value of β01
and β̂1 an estimate of β01 , then standard arguments lead to the sample size being the solution to

βa1√
Var(β̂1)

= Φ−1(α) + Φ−1(1− P ) (10)

where Φ−1 is the N(0, 1) quantile function. Application of the main result (7) to model (8) and
the derivations provided in the supplement lead to the two-term asymptotic variance of β̂1 being

Asy.Var(β̂1) =
Σ0
11

m
+
ϕc(β0,Σ0)

mn
with

c(β0,Σ0) ≡ 1

p
exp

{
−β00 − β01 +

1

2
(Σ0

00 + 2Σ0
01 +Σ0

11)

}
+

1

1− p
exp

{
−β00 +

Σ0
00

2

}
.

where β0 = [β00 β
0
1 ] and Σ0 = vech−1

(
[Σ0

00 Σ0
01 Σ0

11]
T
)
. This can be used to replace Var(β̂1) in

(10), providing the following lower bound for the number of subjects required to achieve at least
P power in test (9) at the α significance level:

m =

⌈
1

(βa1 )
2

{
Σ0
11 +

ϕc(β0,Σ0)

n

}
{Φ−1(α) + Φ−1(1− P )}2

⌉
(11)

where, for any x ∈ R, ⌈x⌉ denotes the smallest integer greater than or equal to x.
We conducted a simulation exercise aimed at understanding whether the number of subjects

m chosen according to the two-term asymptotic variance of β̂1 leads to the advertised power for
hypothesis tests. The simulation study involved producing 1,000 replicates corresponding to (8)
with p = 0.5 and average group size n = 20 for various combinations of β00 , β01 and Σ0 accord- 135

ing to Table 1. We then fitted model (8) to each simulated dataset via the glmmTMB package
(Brooks et al., 2023) in R, and assumed ϕ = 1, α = 0.05 and P = 0.9. Table 1 shows the em-
pirical estimates of P and corresponding 95% confidence intervals resulting from both the fully
asymptotic theory of Jiang et al. (2022) and our two-term asymptotic results. For this illustration
we see that the sample size formula (11) performs very well with regards to the actual power 140

delivered, with the true power value P falling inside of all the confidence intervals. When the
other parameters are held fixed, the required number of subjects decreases for increasing values
of exp(β00), larger β01 values or smaller within-group variation. On the other hand, the minimum
number of subjects values obtained by plugging the one-term asymptotic variance of β̂1 in (10)
are substantially different from those computed using (11) and produced empirical estimates of 145

power that are well below the advertised level P for all the β00 , β01 and Σ0 combinations.
Simulation results such as those summarised by Table 1 provide an appreciation for the prac-

tical utility of our second term improvement to generalised linear mixed models asymptotics.
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β01 = 0.3, Σ0 = vech−1([0.5 0.1 0.25]T )

β00 = −1.5 β00 = −0.5 β00 = 0.5

1-term var. 2-term var. 1-term var. 2-term var. 1-term var. 2-term var.

Minimum m: 24 130 24 63 24 39

Power estimate: 37.0 88.0 58.5 90.1 75.8 89.8

Power conf. int.: (34.0, 40.0) (86.0, 90.0) (55.4, 61.6) (88.2, 92.0) (73.1, 78.5) (87.9, 91.7)

β00 = −1.5, Σ0 = vech−1([0.5 0.1 0.25]T )

β01 = 0.2 β01 = 0.4 β01 = 0.5

1-term var. 2-term var. 1-term var. 2-term var. 1-term var. 2-term var.

Minimum m: 54 304 14 71 9 44

Power estimate: 32.8 88.5 40.5 89.7 41.6 89.8

Power conf. int.: (29.9, 35.7) (86.5, 90.5) (37.5, 43.5) (87.8, 91.6) (38.5, 44.7) (87.9, 91.7)

β00 = −1.5, β01 = 0.3

Σ0 = vech−1([0.5 − 0.1 0.25]T ) Σ0 = vech−1([1 0.2 0.5]T ) Σ0 = vech−1([1 − 0.2 0.5]T )

1-term var. 2-term var. 1-term var. 2-term var. 1-term var. 2-term var.

Minimum m: 24 121 48 200 48 173

Power estimate: 33.5 88.4 46.5 92.2 47.1 91.2

Power conf. int.: (30.6, 36.4) (86.4, 90.4) (43.4, 49.6) (90.5, 93.9) (44.0, 50.2) (89.4, 93.0)

Table 1. The results from the illustrative sample size calculation and corresponding checks of
empirical power (as a percentage) for the simulation study described in the text with n = 20 and
for various combinations of β00 , β01 and Σ0 values. The values of the minimum number of subjects
m correspond to an advertised power of 90% and are calculated using both Asy.Var(β̂1) =
Σ0
11/m (‘1-term var.’) and Asy.Var(β̂1) = Σ0

11/m+ ϕc(β0,Σ0)/(mn) (‘2-term var.’). The 95%
confidence intervals of power are also provided.

SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online contains derivational details and addi-155

tional simulation results.

REFERENCES

BHASKARAN, A. AND WAND, M.P. (2023). Dispersion parameter extension of precise gener-
alized linear mixed model asymptotics. Statist. Probab. Lett., 193, Article 109691.

BROOKS, M., BOLKER, B., KRISTENSEN, K., MAECHLER, M., MAGNUSSON, A., SKAUG,160

H. NIELSEN, A., BERG, C., VAN BENTHAM, K. (2023). glmmTMB 1.1.7: Generalized
linear mixed models using Template Model Builder. R package.

JIANG, J., WAND, M.P. & BHASKARAN, A. (2022). Usable and precise asymptotics for gener-
alized linear mixed model analysis and design. J. R. Statist. Soc., Ser. B, 84, 55–82.

LYU, Z. & WELSH, A.H. (2022). Increasing cluster size asymptotics for nested error regression165

models. J. Statist. Plan. Inf., 217, 52–68.

[Received on 30 March 2023. Editorial decision on 13 November 2023]


